Cho tam giác ABC,E là trung điểm của BC.Lấy D thuộc tia đối của tia EA sao cho EA=ED
a)CM tam giác AEB=tam giác DEC
b)CM AC//BD
c)kẻ EI vuông góc với AC tại I ;EK vuông góc với BD tại K.CM I,E,K thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
.Vì E là trung điểm BC, E là trung điểm AD
→ΔAEB=ΔDEC(c.g.c)→ΔAEB=ΔDEC(c.g.c)
b.Tương tự ta có thể chứng minh ΔAEC=ΔDEB(c.g.c)ΔAEC=ΔDEB(c.g.c)
→ˆEAC=ˆEDB→AC//BD→EAC^=EDB^→AC//BD
c.Vì
⎧⎪⎨⎪⎩ˆEAC=ˆEDB(câub)AE=DEˆAIE=ˆEKD=90o{EAC^=EDB^(câub)AE=DEAIE^=EKD^=90o
→ΔAIE=ΔDKE(g.c.g)→ΔAIE=ΔDKE(g.c.g)
d.Từ câu c
→ˆAEI=ˆKED→AEI^=KED^
→ˆKEI=ˆKED+ˆDEI=ˆAEI+ˆDEI=ˆAED=180o→KEI^=KED^+DEI^=AEI^+DEI^=AED^=180o
→K,E,I→K,E,I thẳng hàng
Sửa đề: Lấy E thuộc BC sao cho BE=BA
a: Chứng minh ΔBAD=ΔBED
Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
=>ΔDEC vuông tại E
c: Sửa đề: Tia BA cắt ED tại F
Ta có: ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>AF=EC
a: Xét ΔABE và ΔACE có
AB=AC
AE chung
BE=CE
Do đó: ΔABE=ΔACE
a: Xét ΔABE và ΔACE có
AB=AC
AE chung
BE=CE
Do đó: ΔABE=ΔACE
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔBAC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(Cạnh huyền-góc nhọn)
A) XÉT ΔABD VUÔNG TẠI D, ΔACE VUÔNG TẠI E
CÓ; AB=AC (ΔABC CÂN TẠI A)
\(\widehat{BAC}\) : GÓC CHUNG
⇒ΔABD= ΔACE (C.HUYỀN-G.NHỌN)
Câu a ) - Chứng minh tam giác vuông ABD = tam giác vuông ACE ( cạnh huyền - góc nhọn ) => Tự chứng minh
Câu b ) - Vì tam giác vuông ABD = tam giác vuông ACE ( ở câu a )
=> Góc B1 = góc C1 ( 2 góc tương ứng )
- Vì tam giác ABC là tam giác cân => góc B = góc C
Ta có góc B1 + góc B2 = góc C1 + C2
=> Góc B2 = góc C2
- Vậy tam giác HBC là tam giác cân
Câu c )
a. Xét tam giác AEB và tam giác DEC có: BE=EC( E là trđ của BC. AE= DE( gt) góc AEB= góc DEC(2 góc đối đỉnh) suy ra tâm giác AEB= tam giác DEC. b. Xét ABDC có: AE=ED. BE= CE. suy ra ABDC là hbh (dhnb)