3n-1⋮n+2
Tìm số nguyên n
Ai lm đc e gọi bằng đka=)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khó gì:
cách 1 : biến đổi vế trước giống vế sau
cách 2 : lấy vế trước trừ vế sau
bài này làm ra thì dài lắm
nha , sau đó tui giải cho
à , kết bạn luôn cho nó vui
Bài 1:
a: Để A là số nguyên thì n+7 chia hết cho 3n-1
=>3n+21 chia hết cho 3n-1
=>3n-1+22 chia hết cho 3n-1
mà n là số nguyên
nên \(3n-1\in\left\{-1;2;11;-22\right\}\)
=>\(n\in\left\{0;1;4;-7\right\}\)
b: Để B là số tự nhiên thì \(3n+2⋮4n-5\) và 3n+2/4n-5>=0
=>\(\left\{{}\begin{matrix}12n+8⋮4n-5\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12n-15+23⋮4n-5\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n-5\in\left\{1;-1;23;-23\right\}\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow n=7\)
Số hữu tỉ âm nhỏ nhất được viết bằng 3 chữ số 1 là \(-\frac{1}{11}\)
Số hữu tỉ âm lớn nhất đưuọc viết bằng 3 chữ số 1 là \(-1,11\)
Tỉ số của A và B là \(-\frac{1}{11}:\left(-1,11\right)=\frac{100}{1221}\)
Tỉ số A vs B là :
\(-\frac{1}{11}:\left(-1,11\right)=\frac{100}{1221}\)
Đáp số : 100/1221
Cho D=3n+5/3n+2
Tìm n để D là phân số
Tìm n để D là số nguyên
Tìm n để D max
TÌm n để D min
Sửa đề: Tìm n ∈ ℕ
a) Ta có:
30¹ = 30
30² = 900
Do đó không có số n ∈ ℕ để 50 < 30 < 90
b) Ta có:
10 < 5² 100
⇒ n = 2
a, 50 < 30n < 90
Với n = 1 ⇒ 50 < 30 (vô lý loại)
Với n ≥ 2 ta có: 302 < 90 ⇒ 900 < 90 (vô lý loại)
Kết luận n \(\in\) \(\varnothing\)
b, 10 < 5n < 100
Với n = 1 ⇒ 10 < 5 (vô lý loại)
Với n = 2 ta có: 10 < 5n < 100 ⇒10 < 52 < 100 ⇒10< 25 < 100 (nhận)
Với n ≥ 3 ta có 5n ≥ 53 = 125 < 100 (vô lý loại)
Vậy n = 2
trong các yếu tố của bài số nguyên tớ tìm được là
12,87.....
k nha bạn
chúc năm mới vui vẻ
\(N=\frac{3n+2}{n+1}=\frac{3n+3-1}{n+1}=\frac{3\left(n+1\right)-1}{n+1}=3-\frac{1}{n+1}\)
Để \(N=1+\frac{1}{n+1}\) đạt GTLN <=> \(\frac{1}{n+1}\) đạt GTLN
=> n + 1 là số nguyên dương nhỏ nhất => n + 1 = 1 => n = 0
=> \(N_{max}=\frac{3.0+2}{0+1}=2\)
Vậy GTLN của \(N\) là 2 <=> n = 0
\(\left(3n-4\right)⋮\left(n+1\right)\\ \Rightarrow\left(3n+3-7\right)⋮\left(n+1\right)\\ \Rightarrow\left[3\left(n+1\right)-7\right]⋮\left(n+1\right)\)
Mà \(3\left(n+1\right)⋮\left(n+1\right)\Rightarrow-7⋮\left(n+1\right)\)
\(\Rightarrow n+1\inƯ\left(-7\right)=\left\{-7;-1;1;7\right\}\\ \Rightarrow n\in\left\{-8;-2;0;6\right\}\)
TL:
Vì \(n+1⋮n+1\)
\(\Rightarrow3\cdot\left(n+1\right)⋮n+1\)
\(\Rightarrow3n+3⋮n+1\)
Mà \(3n-4⋮n+1\)
\(\Rightarrow\left(3n-4\right)-\left(3n+3\right)⋮n+1\)
\(\Rightarrow3n-4-3n-3⋮n+1\)
\(\Rightarrow-7⋮n+1\)
\(\Rightarrow n+1\inƯ\left(-7\right)\)
\(\Rightarrow n+1\in\left\{1;7;-1;-7\right\}\)
\(\Rightarrow n\in\left\{0;6;-2;-8\right\}\)
Thử lại:
\(3n-4\) | \(-4\) | \(14\) | \(-10\) | \(-28\) |
\(n+1\) | \(1\) | \(7\) | \(-1\) | \(-7\) |
Kết luận | \(\left(-4\right)⋮1\) Chọn | \(14⋮7\) Chọn | \(\left(-10\right)⋮\left(-1\right)\) | \(\left(-28\right)⋮\left(-7\right)\) Chọn |
Vậy \(n\in\left\{0;6;-2;-8\right\}\)
CHÚC BẠN HỌC TÔT NHÉ.
Ta có: \(\dfrac{3n-1}{n+2}=\dfrac{3n+6-7}{n+2}=\dfrac{3\left(n+2\right)}{n+2}-\dfrac{7}{n+2}=3-\dfrac{7}{n+2}\)
Để \(3n-1⋮n+2\) thì \(\dfrac{7}{n+2}\inℤ\)
\(\Rightarrow7⋮n+2\)
\(\Rightarrow n+2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Rightarrow n\in\left\{-9;-3;-1;5\right\}\)
Vậy \(n\in\left\{-9;-3;-1;5\right\}\) thì \(3n-1⋮n+2\)