K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

\(\frac{2}{5}.A\)\(\frac{2}{1.3}\)\(\frac{2}{3.5}\)\(\frac{2}{5.7}\)+ ... + \(\frac{2}{99.100}\)\(\frac{3-1}{1.3}\)+\(\frac{5-3}{3.5}\)+\(\frac{7-5}{5.7}\)+ ... + \(\frac{101-99}{99.101}\)

\(\frac{2}{5}.A\)= 1 \(-\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(-\)\(\frac{1}{5}\)+\(\frac{1}{5}\)\(-\)\(\frac{1}{7}\)+ ... + \(\frac{1}{99}\)+\(\frac{1}{101}\)= 1\(-\)\(\frac{1}{101}\)=\(\frac{100}{101}\)

\(A\)=\(\frac{100}{101}\)\(\frac{2}{5}\)\(\frac{100}{101}\).\(\frac{5}{2}\)\(\frac{250}{101}\)

11 tháng 8 2017

=5/2.(2/1.3+2/3.5+2/5.7+...+2/99.101)

=5/2.(1-1/3+1/3-1/5+1/5-1/7+..+1/99-1/101)

=5/2.(1-1/101)

=5/2.100/101

=250/101

5 tháng 3 2017

A=\(\frac{2.6.10+6.10.14+...+194+198+202}{1.3.5+3.5.7+...+97.99.101}\)\(=\frac{2.2.2\left(1.3.5\right)+2.2.2\left(3.5.7\right)+...+2.2.2\left(97.99.101\right)}{1.3.5+3.5.7+...+97.99.101}\)

\(=\frac{2.2.2\left(1.3.5+3.5.7+...+97.99.101\right)}{1.3.5+3.5.7+...+97.99.101}\)\(=\frac{2.2.2}{1}=8\)

13 tháng 5 2016

\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+....+\frac{2}{99\cdot101}\)

\(\frac{2}{1\cdot3}=\frac{3-1}{1\cdot3}=\frac{3}{1\cdot3}-\frac{1}{1\cdot3}=\frac{1}{1}-\frac{1}{3}=1-\frac{1}{3}\)

\(\frac{2}{3\cdot5}=\frac{5-3}{3\cdot5}=\frac{5}{3\cdot5}-\frac{3}{3\cdot5}=\frac{1}{3}-\frac{1}{5}\)

....

\(\frac{2}{99\cdot101}=\frac{101-99}{99\cdot101}=\frac{101}{99\cdot101}-\frac{99}{99\cdot101}=\frac{1}{99}-\frac{1}{101}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)

 

 

13 tháng 5 2016

\(\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+\frac{5}{5\cdot7}+...+\frac{5}{99\cdot101}\)

=\(\frac{5}{2}\cdot\frac{2}{1\cdot3}+\frac{5}{2}\cdot\frac{2}{3\cdot5}+\frac{5}{2}\cdot\frac{2}{5\cdot7}+...+\frac{5}{2}\cdot\frac{2}{99\cdot101}\)

=\(\frac{5}{2}\cdot\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right]\)

=\(\frac{5}{2}\cdot\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right]\)

=\(\frac{5}{2}\cdot\left(1-\frac{1}{101}\right)\)

=\(\frac{5}{2}\cdot\frac{100}{101}\)

\(=\frac{250}{101}\)

18 tháng 4 2015
 
Đặt S = 1  +  1  + … +  1
1 . 33 . 599 . 101
Ta có: 
1  -  1  =  3 - 1  =  2
131 . 31 . 3
Suy ra: 
1  =  1 (1  -  1)
1 . 3213
Tương tự ta có: 
1  =  1 (1  -  1)
3 . 5235
 
1  =  1 (1  -  1)
5 . 7257
. . . 
1  =  1 (1  -  1)
99 . 101299101
Cộng các vế của các đẳng thức trên ta được:- Vế trái: tổng S- Vế phải: số thứ hai ở dòng trên sẽ triệt tiêu với số thứ nhất ở dòng dưới ⇒ vế phải còn lại số thứ nhất của dòng đầu tiên trừ đi số thứ hai của dòng cuối cùng. 
S =  1  (1  -  1 )
21101
 
S =  1  101 - 1
2101
 
S = 100
202
Rút gọn phân số trên (chia cả tử và mẫu cho 2) ta được: 
Tổng ban đầu = 50
101
4 tháng 1 2019

Ta có:

1×2×3×4....+99×100×101

=98!+999900

=Math ERROR

5 tháng 1 2019

D=1x2x3 + 3x4x5 + ... + 99x100x101 đề chính xác là như vậy ah bn?

2 tháng 3 2017

\(\frac{2}{1.2}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.101}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

3 tháng 3 2017

Bạn giúp mk nốt b được ko?

Link nè lên google search nha!

https://olm.vn/hoi-dap/question/162533.html

19 tháng 4 2018

A = \(\frac{1}{1\cdot3}\)+  \(\frac{1}{3.5}\)\(\frac{1}{5.7}\)+  ..... + \(\frac{1}{99.101}\)

   = \(\frac{1}{2}\). ( \(\frac{1}{1.3}\)\(\frac{1}{3.5}\)\(\frac{1}{5.7}\)+ ...... + \(\frac{1}{99.101}\))

   = \(\frac{1}{2}\). ( 1 - \(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{5}\)\(\frac{1}{5}\)\(\frac{1}{7}\)+ ........ + \(\frac{1}{99}\)\(\frac{1}{101}\))

   = \(\frac{1}{2}\). ( 1 - \(\frac{1}{101}\))

   =  \(\frac{1}{2}\)\(\frac{100}{101}\)\(\frac{50}{101}\)

   Thấy đúng thì cho mình một k nha!!!

18 tháng 7 2023

S = (1 +  3 + 5 + 7+ 9 + 99 + 101)  - ( 2 + 4 + 6 + ...+ 78 + 80)

Đặt A = 1 + 3 + 5 +7 + 9 +...+99 + 101 

      B = 2 + 4 + 6 + ...+ 78 + 80

A = 1 + 3 + 5 + 7 + 9+...+ 101

 Dãy số trên là dãy số cách đều với khoảng cách là:

        3 - 1 = 2

   Số số hạng của dãy số trên là: (101 - 1 ): 2 + 1 = 51 (số )

 Tổng A = (101 + 1)\(\times\) 51 : 2 = 2601

B = 2 + 4 + 6 + ...+ 78 + 80

Dãy số trên là dãy số cách đều với khoảng cách là: 4 - 2 = 2

Số số hạng của dãy số trên là: (80 - 2): 2 + 1 = 40

Tổng B = (80 + 2)\(\times\) 40: 2 =  1640

S = 2601 - 1640

S = 961

 

 

5 tháng 5 2019

\(=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}\)

\(=\frac{250}{101}\)