E=-1/3.(1+2+3)-1/4.(1+2+3+4)-...-1/50.(1+2+3+4+...+50)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+2+3+4+5+...+50
A=(50+1)+(49+2)+(48+3)+...
A=(50+1)*[(50-1):1+1]:2
A=51*25=1275
B=2+4+6+8+10+...+100
B=(100+2)+(98+4)+(96+6)+...
B=(100+2)*[(100-2):2+1]:2
B=102*25=2550
C=1+4+7+10+13+...+99
C=(99+1)+(96+4)+(93+7)+...
C=(99+1)*[(99-1):3+1]:2
C=100*16.8333=1683.33
D=2+5+8+11+14+...+98
D=(98+2)+(95+5)+(92+8)+...
D=(98+2)*[(98-2):3+1]:2
D=100*16.5=1650
E=1+2+3+4+5+...+25
E=(25+1)+(24+2)+(23+3)+...
E=(25+1)*[(25-1):1+1]:2
E=26*12.5=325
F=2+4+6+8+10+...+50
F=(50+2)+(48+4)+(46+6)+...
F=(50+2)*[(50-2):2+1]:2
F=52*12.5=650
G=3+5+7+9+11+...+51
G=(51+3)+(49+5)+(47+7)+...
G=(51+3)*[(51-3):2+1]:2
G=54*12.5=675
H=1+5+9+13+17+...+81
H=(81+1)+(77+5)+(73+9)+...
H=(81+1)*[(81-1):4+1]:2
H=82*10.5=861
a) A =1 + 2 + 3 + 4 + … + 50
Số số hạng của dãy số trên là:
(50 - 1) : 1 + 1 = 50 (số số hạng)
A =(1+ 50) . 50 : 2
= 51 . 50 : 2
= 2550 : 2
= 1275
b) B = 2 + 4 + 6 + 8 + ... + 100
Số số hạng của dãy số trên là:
(100 - 2) : 2 + 1 = 50 (số hạng)
Có số cặp là:
50 : 2 = 25 (cặp)
Tổng của 1 cặp là:
100 + 2 = 102
Tổng của dãy số là:
25 .102 = 2550
c) C = 1 + 3 + 5 + 7 + … + 99
Số số hạng của dãy trên là:
(99 - 1) : 2 + 1 = 50 (số số hạng)
C = (1 + 99) . 50 : 2
= 100 . 50 : 2
= 5000 : 2
= 2500
d) D = 2 + 5 + 8 + 11 + … + 98
Số số hạng của dãy trên là:
(98 - 2) : 3 + 1 = 33 (số số hạng)
=> Dãy trên có 16 cặp
D = (95 + 2) .16 + 98
= 97 . 16 + 98
= 1552 +98
= 1650
E = -1/3 +1/(3^2) - 1/(3^3) + .... - 1/(3^51)
E.1/3 = -1/(3^2) + 1/(3^3)-1/(3^4) +.... - 1/(3^52)
E + E.1/3 = [-1/3+1/(3^2) - 1/(3^3) +.... -1/(3^51)]+[-1/(3^2) +1/(3^3) -1/(3^4) +.... - 1/(3^52)]
E.4/3 = -1/3-1/(3^52)
E.4/3 = (-3^51 - 1)/(3^52)
E = (-3^51 - 1)/(3^52) . 3/4
E = (-3^51-1)/(4.3^51)
\(B=1+\dfrac{1}{2}\cdot\dfrac{2\cdot3}{2}+\dfrac{1}{3}\cdot\dfrac{3\cdot4}{2}+...+\dfrac{1}{50}\cdot\dfrac{50\cdot51}{2}\)
\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{51}{2}\)
\(=\dfrac{50\cdot\dfrac{\left(51+2\right)}{2}}{2}=50\cdot\dfrac{53}{4}=662.5\)
E=-1/3+1/3^2-1/3^3+1/3^4-...+1/3^50-1/3^51
3E=-1+1^2-1^3+1^4-1^5+...+1^50-1^51
3E=-1+1-1+1-1+...+1-1
3E=0
Từ dãy trên ta có:
(\(\frac{3}{2}\)+\(\frac{1}{2}\))+(\(\frac{8}{3}\)+\(\frac{2}{3}\))+......+(\(\frac{2600}{51}\)+\(\frac{1}{51}\)) < vì không có cách nhập hỗn số nên mình đổi ra phân số >
= 2 + 3 + 4 + 5 + 6 + ..........................+ 51
Từ 2 -> 51 có :( 51 - 2 ) : 1 + 1 = 50 số
Chia ra : 50 : 2 = 25 cặp
ta có( 51 + 2 ) x 25 =1325
Vậy tổng trên có kết quả bằng 1325 (tớ chỉ nghĩ thế thôi chứ sai đừng trách nhá.Đùa thôi,đúng đấy )
\(E=-\dfrac{1}{3}\cdot\left(1+2+3\right)-\dfrac{1}{4}\left(1+2+3+4\right)-...-\dfrac{1}{50}\left(1+2+3+...+50\right)\)
\(=\dfrac{-1}{3}\cdot\dfrac{3\cdot4}{2}-\dfrac{1}{4}\cdot\dfrac{4\cdot5}{2}-...-\dfrac{1}{50}\cdot\dfrac{50\cdot51}{2}\)
\(=\dfrac{-4}{2}-\dfrac{5}{2}-...-\dfrac{51}{2}\)
\(=\dfrac{-\left(4+5+...+51\right)}{2}\)
\(=\dfrac{-\left(51+4\right)\cdot\dfrac{48}{2}}{2}=-\dfrac{1320}{2}=-660\)