KHAI PHƯƠNG CĂN BẬC HAI SAU:
\(\sqrt{13+4\sqrt{3}}\)
GIÚP MK NHÉ M.N!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\sqrt{9+4\sqrt{3}+4}\)
= \(\sqrt{\left(\sqrt{3}+2\right)^2}\)
=\(\sqrt{3}+2\)
\(\sqrt{9+4+4\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+2\right)^2}\)
\(=\sqrt{3}+2\)
Ta có: \(x^2+4\left(\sqrt{1-x}+\sqrt{x+1}\right)-8=0\)
\(\Leftrightarrow-\left(x-1\right)\left(x+1\right)+4\left(\sqrt{1-x}+\sqrt{1+x}\right)-7\)
Đặt \(a=\sqrt{1-x}+\sqrt{1+x}\Rightarrow\left(1-x\right)\left(1+x\right)=\left(\frac{a^2-2}{2}\right)^2\). Khi đó phương trình trở thành:
\(-\left(\frac{a^2-2}{2}\right)^2-4a+7=0\)
\(\Leftrightarrow-a^4+4a^2-16a-32=0\)\(\Leftrightarrow\left(a-2\right)\left(-a^3-2a^2+16\right)=0\)
\(\Leftrightarrow a=2\).
Các bạn làm tiếp nhé, đoạn cuối phân tích đa thức thành nhân tử thì bài làm sẽ hợp lý hơn. Ở đây hơi vội nên mình bấm máy tính.
Áp dụng quy tắc khai phương một tích
1: Ta có: \(\sqrt{\frac{1}{5}}\cdot\sqrt{\frac{1}{20}}\cdot3\cdot7\)
\(=\sqrt{\frac{1}{5}}\cdot\sqrt{\frac{1}{20}}\cdot\sqrt{9}\cdot\sqrt{49}\)
\(=\sqrt{\frac{1}{5}\cdot\frac{1}{20}\cdot9\cdot49}\)
\(=\sqrt{\frac{441}{100}}=\frac{\sqrt{441}}{\sqrt{100}}=\frac{21}{10}\)
2: Ta có: \(\sqrt{0,001\cdot360\cdot3^2\cdot\left(-3\right)^2}\)
\(=\sqrt{0,001}\cdot\sqrt{360}\cdot\sqrt{3^{^2}}\cdot\sqrt{\left(-3\right)^2}\)
\(=\sqrt{\frac{1}{100}}\cdot\sqrt{\frac{1}{10}}\cdot\sqrt{6^2}\cdot\sqrt{10}\cdot3\cdot3\)
\(=\frac{1}{10}\cdot6\cdot9\cdot\sqrt{\frac{1}{10}\cdot10}=\frac{54}{10}\cdot1=\frac{27}{5}\)
Áp dụng quy tắc nhân căn thức bậc hai
1: Ta có: \(2\sqrt{2}\left(4\sqrt{8}-\sqrt{32}\right)\)
\(=2\sqrt{2}\cdot4\sqrt{8}-2\sqrt{2}\cdot\sqrt{32}\)
\(=8\cdot\sqrt{16}-2\cdot\sqrt{64}\)
\(=8\cdot4-2\cdot8\)
=32-16=16
Bài 1 :
a, ĐKXĐ : \(3-2x\ge0\)
\(\Rightarrow x\le\dfrac{3}{2}\)
Vậy ...
b, ĐKXĐ : \(\left\{{}\begin{matrix}-\dfrac{5}{2x+1}\ge0\\2x+1\ne0\end{matrix}\right.\)
\(\Rightarrow2x+1< 0\)
\(\Rightarrow x< -\dfrac{1}{2}\)
Vậy ...
a) \(\sqrt {15} \) đọc là: căn bậc hai số học của mười lăm
\(\sqrt {27,6} \) đọc là: căn bậc hai số học của hai mươi bảy phẩy sáu
\(\sqrt {0,82} \) đọc là: căn bậc hai số học của không phẩy tám mươi hai
b) Căn bậc hai số học của 39 viết là: \(\sqrt {39} \)
Căn bậc hai số học của \(\frac{9}{{11}}\) viết là: \(\sqrt {\frac{9}{{11}}} \)
Căn bậc hai số học của \(\frac{{89}}{{27}}\) viết là: \(\sqrt {\frac{{89}}{{27}}} \)