Giúp mình: b1: a) 9/n-1
B) n-1/8
C) n+6/n
D) n/n-4
E) n+5/n-2
G) 3n-13/n+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow n-1+7⋮n-1\)
Mà \(n-1⋮n-1\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)=\left\{1;7\right\}\\ \Rightarrow n\in\left\{2;8\right\}\)
\(b,\Rightarrow3\left(n+1\right)+2⋮n+1\)
Mà \(3\left(n+1\right)⋮n+1\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{1;2\right\}\\ \Rightarrow n=1\left(n\ne0\right)\)
a) n - 6 chia hết cho n-1
n - 1 - 5 chia hết cho n - 1
n - 1 thuộc U(-5)
Rồi bạn liệt kê ra
a) n -6 chia hết cho n-1
n-1-5 chia hết cho n -1
n-1 chia hết cho n-1
=> n-1 € Ư (5)={1;5;-1;-5}
+ n-1 =1=>n=2
+n-1=5=>n=6
+n-1=-1=>n=0
+n+1=-5=>n=-4
=>n={2;6;0;-4}
Vì \(19⋮n+4\)
\(\Rightarrow n+4\varepsilon\left\{1;19\right\}\)
Vì n là STN nên n=19-4=15
b,\(\hept{\begin{cases}n+13⋮n+6\\n+6⋮n+6\end{cases}\Rightarrow n+13-n-6⋮n+6}\)
\(\Leftrightarrow7⋮n+6\)
\(\Rightarrow n+6\varepsilon\left\{1;7\right\}\)
vì n là STN nên n=7-6=1
c,\(\hept{\begin{cases}2n+25⋮n+6\\n+6⋮n+6\end{cases}\Rightarrow\hept{\begin{cases}2n+25⋮n+6\\2n+12⋮n+6\end{cases}}}\)
\(\Rightarrow2n+25-2n-12⋮n+6\)
\(\Leftrightarrow13⋮n+6\)
\(\Rightarrow n+6\varepsilon\left\{1;13\right\}\)
vì n là STN nên n=13-6=7
các phần còn lại bạn nhân vào rồi trừ hết x đi như phần c nha
trần tuấn anh ơi bạn có thể trả lời hết luôn 3 câu còn lại ko,hộ mk 1 chút nha
tham khảo:
\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)