K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

đặt a = 10k, b = 3k

\(\Rightarrow\frac{3\times10k-2\times3k}{10k-3\times3k}=\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)24

10 tháng 8 2017

Thế số vào phép tính, ta có đề:

Tính giá trị biểu thức

\(\frac{310-23}{10-33}=tử-tử\) và  \(mẫu-mẫu\)

\(=\frac{310-23}{10-33}=\frac{287}{-23}\)

Đs:

Đơn giản mà cũng hỏi

8 tháng 5 2018

cách khác:

\(B=\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}\)

\(=\frac{3a-2b}{2a+a-2b}+\frac{3b-a}{b-a+2b}\)  (thay 5 = a - 2b)

\(=\frac{3a-2b}{3a-2b}+\frac{3b-a}{3b-a}\)

\(=1+1=2\)

8 tháng 5 2018

Biết a - 2b = 5 tính giá trị biểu thức:

\(B=\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}\)

\(=\frac{2a+\left(a-2b\right)}{2a+5}+\frac{3b-a}{b-5}\)

\(=\frac{2a+5}{2a+5}+\frac{b-5}{b-5}\)

\(=1+1=2\)

Vậy B = 2

9 tháng 1 2018

a-2b=5 => a=2b+5

Thay a=2b+5 vào B thì : 

B = 6b+15-2b/4b+10+5 + 3b-2b-5/b-5

   = 4b+15/4b+15 + b-5/b-5 = 1+1 = 2

Tk mk nha

9 tháng 1 2018

Ta có : a - 2b = 5 \(\Rightarrow\)2b = a - 5

          a - 2b = 5 \(\Rightarrow\)a = 2b + 5

Thay vào , ta được :

\(B=\frac{3a-\left(a-5\right)}{2a+5}+\frac{3b-\left(2b+5\right)}{b-5}\)

\(B=\frac{3a-a+5}{2a+5}+\frac{3b-2b-5}{b-5}\)

\(B=\frac{2a+5}{2a+5}+\frac{b-5}{b-5}\)

\(B=1+1=2\)

20 tháng 7 2017

Từ a-2b=5  =>  a = 2b+5 

Thay 2b + 5 vào a, ta có biểu thức  :

\(\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}=\frac{3.\left(2b+5\right)-2b}{2.\left(2b+5\right)+5}+\frac{3b-\left(2b+5\right)}{b-5}\)

\(=\frac{6b+15-2b}{4b+10+5}+\frac{3b-2b-5}{b-5}=\frac{4b+15}{4b+15}+\frac{b-5}{b-5}=1+1=2\)

19 tháng 7 2017

thay a-2b vào biểu thức cần tính

17 tháng 12 2018

Bài này dễ mà bạn

17 tháng 12 2018

dễ thì bn giải hộ mk đi,nói đc lm đc nhỉ

10 tháng 2 2018

Ta có:\(\frac{3a-b}{2a+15}=\frac{3a-b}{2a+a-b}=\frac{3a-b}{3a-b}=1\)

          \(\frac{3b-a}{2b-15}=\frac{3b-a}{2b-\left(a-b\right)}=\frac{3b-a}{3b-a}=1\)  

=>P=1+1=2

10 tháng 2 2018

Ta có a = 15 + b

=> \(\frac{3a-b}{2a+15}+\frac{3b-a}{2b-15}\) = \(\frac{3\left(15+b\right)-b}{2\left(15+b\right)+15}+\frac{3b-\left(15+b\right)}{2b-15}\)

\(\frac{45+3b-b}{30+2b+15}+\frac{3b-15-b}{2b-15}\)

\(\frac{45+2b}{45+2b}+\frac{2b-15}{2b-15}\)= 1 + 1 = 2

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)

3 tháng 12 2016

Từ \(a-2b=5\Rightarrow a=5+2b\) thay vào P ta có:

\(P=\frac{3\left(2b+5\right)-2b}{2\left(2b+5\right)+5}+\frac{3b-\left(2b+5\right)}{b-5}\)\(=\frac{6b+15-2b}{4b+10+5}+\frac{3b-2b+5}{b-5}\)

\(=\frac{4b+15}{4b+15}+\frac{b-5}{b-5}=1+1=2\)