Tìm x
A)8x2+30x+7=0
B)x3-11x2+30x=0
Dạng phân tích đa thức thành nhân tử bằng cách thêm bớt và tách .mọi người cố gắng giúp mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow8x^2+16x+14x+7=0\)
=>(2x+1)(8x+7)=0
=>x=-1/2 hoặc x=-7/8
b: \(=x^3-x-6x-6\)
\(=x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-6\right)=\left(x+1\right)\left(x-3\right)\left(x+2\right)\)
\(a,\Rightarrow8x^2+2x+28x+7=0\\ \Rightarrow2x\left(4x+1\right)+7\left(4x+1\right)=0\\ \Rightarrow\left(2x+7\right)\left(4x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=-\dfrac{1}{4}\end{matrix}\right.\\ b,Sửa:x^3-7x-6=0\\ \Rightarrow x^3-x-6x-6=0\\ \Rightarrow x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)=0\\ \Rightarrow\left(x+1\right)\left(x^2-x-6\right)=0\\ \Rightarrow\left(x+1\right)\left(x^2-3x+2x-6\right)=0\\ \Rightarrow\left(x+1\right)\left(x-3\right)\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=3\\x=-2\end{matrix}\right.\)
x3 - 11x2 + 30x = x(x2 - 11x + 30) = x(x2 - 6x - 5x + 30) = x[x(x - 6) - 5(x - 6)] = x(x - 5)(x - 6)
a. $6x^2-11x=x(6x-11)$
b. $x^7+x^5+1=(x^7-x)+(x^5-x^2)+x+x^2+1$
$=x(x^6-1)+x^2(x^3-1)+(x^2+x+1)$
$=x(x^3-1)(x^3+1)+x^2(x^3-1)+(x^2+x+1)$
$=(x^3-1)(x^4+x+x^2)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^4+x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^4+x^2+x)+1]$
$=(x^2+x+1)(x^5-x^4+x^3-x+1)$
c.
$x^8+x^4+1=(x^4)^2+2.x^4+1-x^4$
$=(x^4+1)^2-(x^2)^2$
$=(x^4+1-x^2)(x^4+1+x^2)$
$=(x^4+1-x^2)(x^4+2x^2+1-x^2)$
$=(x^4-x^2+1)[(x^2+1)^2-x^2]$
$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$
d.
$x^3-5x+8-4=x^3-5x+4$
$=x^3-x^2+x^2-x-(4x-4)$
$=x^2(x-1)+x(x-1)-4(x-1)=(x-1)(x^2+x-4)$
e.
$x^5+x^4+1=(x^5-x^2)+(x^4-x)+x^2+x+1$
$=x^2(x^3-1)+x(x^3-1)+x^2+x+1$
$=(x^3-1)(x^2+x)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^2+x)+1]$
$=(x^2+x+1)(x^3-x+1)$
a. (3x - 1)2 - (x + 3)2 = 0
\(\Leftrightarrow\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)
\(\Leftrightarrow\left(4x+2\right)\left(2x-4\right)=0\)
\(\Leftrightarrow4x+2=0\) hoặc \(2x-4=0\)
1. \(4x+2=0\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\)
2. \(2x-4=0\Leftrightarrow2x=4\Leftrightarrow x=2\)
S=\(\left\{-\dfrac{1}{2};2\right\}\)
b. \(x^3=\dfrac{x}{49}\)
\(\Leftrightarrow49x^3=x\)
\(\Leftrightarrow49x^3-x=0\)
\(\Leftrightarrow x\left(49x^2-1\right)=0\)
\(\Leftrightarrow x\left(7x+1\right)\left(7x-1\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(7x+1=0\) hoặc \(7x-1=0\)
1. x=0
2. \(7x+1=0\Leftrightarrow7x=-1\Leftrightarrow x=-\dfrac{1}{7}\)
3. \(7x-1=0\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)
=yz(x^2+5x-14)
=yz(x^2-2x+7x-14)
=yz[x(x-2)+7(x-2)
=yz(x-2)(x+7)
a)8x2+30x+7=(8x2+2x)+(28x+7)
=2x(4x+1)+7(4x+1)=(4x+1)(2x+7)
b)15x2-x-6=15x2-10x+9x-6
=5x(3x-2)+3(3x-2)=(3x-2)(5x+3)
a) \(8x^2+30x+7=0\)
\(\Rightarrow8x^2+2x+28x+7=0\)
\(\Rightarrow2x\left(4x+1\right)+7\left(4x+1\right)=0\)
\(\Rightarrow\left(2x+7\right)\left(4x+1\right)=0\)
\(\Rightarrow\)\(2x+7=0\) hoặc \(4x+1=0\)
\(\Rightarrow\)\(2x=-7\) ; \(4x=-1\)
\(\Rightarrow\)\(x=\frac{-7}{2}\) ; \(x=\frac{-1}{4}\)
Vậy \(x\in\left\{\frac{-7}{2};\frac{-1}{4}\right\}\)
b) \(x^3-11x^2+30x=0\)
\(\Rightarrow x\left(x^2-11x+30\right)=0\)
\(\Rightarrow x\left(x^2-6x-5x+30\right)=0\)
\(\Rightarrow x\left[x\left(x-6\right)-5\left(x-6\right)\right]=0\)
\(\Rightarrow x\left(x-5\right)\left(x-6\right)=0\)
\(\Rightarrow\)\(x=0\) hoặc \(x-5=0\) hoặc \(x-6=0\)
\(\Rightarrow\)\(x=0\) ; \(x=5\) ; \(x=6\)
Vậy \(x\in\left\{0;5;6\right\}\)
a)\(8x^2+30x+7=0\Leftrightarrow8x^2+2x+28x+7=0\Leftrightarrow2x\left(4x+1\right)+7\left(4x+1\right)=0\)
\(\Leftrightarrow\left(2x+7\right)\left(4x+1\right)=0\Leftrightarrow\orbr{\begin{cases}2x+7=0\\4x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{7}{2}\\x=-\frac{1}{4}\end{cases}}\)
b)\(x^3-11x^2+30x=0\Leftrightarrow x\left(x^2-11x+30\right)=0\Leftrightarrow x\left(x^2-5x-6x+30\right)=0\)
\(\Leftrightarrow x\left[x\left(x-5\right)-6\left(x-5\right)\right]=0\Leftrightarrow x\left(x-6\right)\left(x-5\right)=0\)
<=>x=0 hoặc x-6=0 hoặc x-5=0 <=> x=0 hoặc x=6 hoặc x=5