BT3: Thực hiện phép tính a, 3/ x-1 + 5/ x +1 - x/x^2-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
b: \(=\dfrac{x+3-4-x}{x-2}=\dfrac{-1}{x-2}\)
Bài 2:
a: \(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)
\(=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{x+2}{2x}\)
d: \(=\dfrac{3}{2x^2y}+\dfrac{5}{xy^2}+\dfrac{x}{y^3}\)
\(=\dfrac{3y^2+10xy+2x^3}{2x^2y^3}\)
e: \(=\dfrac{x^2+2xy+x^2-2xy-4xy}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2x^2-4xy}{\left(x+2y\right)\cdot\left(x-2y\right)}=\dfrac{2x}{x+2y}\)
\(=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{13\cdot15}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{13}-\dfrac{1}{15}=\dfrac{14}{15}\)
a) \(2x\left(x+5\right)-2x^2=2x^2+10x-2x^2=10x\)
b) \(\left(x+3\right)^2+\left(x-1\right)\left(3+2x\right)=x^2+6x+9+3x+2x^2-3-2x\)
\(=3x^2+7x+6\)
a: \(2x\left(x+5\right)-2x^2=2x^2+10x-2x^2=10x\)
b: \(\left(x+3\right)^2+\left(2x+3\right)\left(x-1\right)\)
\(=x^2+6x+9+2x^2-2x+3x-3\)
\(=3x^2+7x+6\)
a/\(\left(x-1\right)\left(x^5+x^4+x^3+x^2+x+1\right).\)
\(=\left(x-1\right)\left[\left(x^5+x^4+x^3\right)+\left(x^2+x+1\right)\right]\)
\(=\left(x-1\right)\left[x^3\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(=\left(x^2-1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
Câu b/ quên làm ạ :> Bù nè
b/ \(2\left(3x-1\right)\left(2x+5\right)-\left(4x-1\right)\left(3x-2\right)\)
\(=2\left(6x^2+15x-2x-5\right)-\left(12x^2-8x-3x+2\right)\)
\(=2\left(6x^2+13x-5\right)-\left(12x^2-11x+2\right)\)
\(=12x^2+26x-10-\left(12x^2-11x+2\right)\)
\(=12x^2+26x-10-12x^2+11x-2\)
\(=37x-12\)
1) \(5-\left(1+\dfrac{1}{3}\right):\left(1-\dfrac{1}{3}\right)\)
\(=5-\dfrac{4}{3}:\dfrac{2}{3}\)
\(=5-\dfrac{4}{3}\cdot\dfrac{3}{2}\)
\(=5-\dfrac{4}{2}\)
\(=5-2\)
\(=3\)
b) \(\left(1+\dfrac{2}{3}-\dfrac{5}{4}\right)-\left(1-\dfrac{5}{4}\right)+2022-\dfrac{2}{3}\)
\(=1+\dfrac{2}{3}-\dfrac{5}{4}-1+\dfrac{5}{4}++2022-\dfrac{2}{3}\)
\(=\left(1-1\right)+\left(\dfrac{2}{3}-\dfrac{2}{3}\right)+\left(-\dfrac{5}{4}+\dfrac{5}{4}\right)+2022\)
\(=0+0+0+2022\)
\(=2022\)
2) \(0,7^2\cdot x=0,49^2\)
\(\Rightarrow x=\dfrac{0,49^2}{0,7^2}\)
\(\Rightarrow x=\left(\dfrac{0,49}{0,7}\right)^2\)
\(\Rightarrow x=\left(0,7\right)^2\)
\(\Rightarrow x=0,49\)
b) \(x:\left(-0,5\right)^3=\left(0,5\right)^2\)
\(\Rightarrow x=\left(0,5\right)^2\cdot\left(-0,5\right)^3\)
\(\Rightarrow x=\left(-0,5\right)^5\)
\(\Rightarrow x=-\dfrac{1}{32}\)
2:
a: =>x*0,49=0,49^2
=>x=0,49
b: =>x=(0,5)^2*(-1)*(0,5)^3=-(0,5)^5
\(3\left(x+1\right)^2+2\left(x-3\right)^3-5\left(x-5\right)\left(x+5\right)\)
\(=3\left(x^2+2x+1\right)+2\left(x^2-6x+9\right)-5\left(x^2-25\right)\)
\(=3x^2+6x+3+2x^2-12x+18-5x^2+125\)
\(=-6x+146\)
\(a,=\dfrac{4\sqrt{x}-4-2\sqrt{x}-2-\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\left(x\ge0;x\ne1\right)\\ =\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{1}{\sqrt{x}+1}\\ b,=\dfrac{x^2+4x+3+x^2+4x+4}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{x+1}{x+3}\left(x\ne-1;x\ne-2;x\ne-3\right)\\ =\dfrac{\left(2x^2+8x+7\right)\left(x+1\right)}{\left(x+2\right)\left(x+3\right)^2}\)
\(a,\dfrac{4}{\sqrt{x}+1}+\dfrac{2}{1-\sqrt{x}}-\dfrac{\sqrt{x}-5}{x-1}\)
\(=\dfrac{4\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{4\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{4\sqrt{x}-4-2\sqrt{x}-2-\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{1}{\sqrt{x}+1}\)
\(b,\left(\dfrac{x+1}{x+2}+\dfrac{x+2}{x+3}\right):\dfrac{x+3}{x+1}\)
\(=\left(\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}+\dfrac{\left(x+2\right)^2}{\left(x+2\right)\left(x+3\right)}\right).\dfrac{x+1}{x+3}\)
\(=\left(\dfrac{x^2+4x+3}{\left(x+2\right)\left(x+3\right)}+\dfrac{x^2+4x+4}{\left(x+2\right)\left(x+3\right)}\right).\dfrac{x+1}{x+3}\)
\(=\dfrac{x^2+4x+3+x^2+4x+4}{\left(x+2\right)\left(x+3\right)}.\dfrac{x+1}{x+3}\)
\(=\dfrac{2x^2+8x+7}{\left(x+2\right)\left(x+3\right)}.\dfrac{x+1}{x+3}\)
\(=\dfrac{\left(2x^2+8x+7\right)\left(x+1\right)}{\left(x+2\right)\left(x+3\right)^2}\)
\(=\dfrac{\left(2x^2+8x+7\right).x+2x^2+8x+7}{\left(x+2\right)\left(x+3\right)^2}\)
\(=\dfrac{2x^3+8x^2+7x+2x^2+8x+7}{\left(x+2\right)\left(x+3\right)^2}\)
\(=\dfrac{2x^3+10x^2+15x+7}{\left(x+2\right)\left(x+3\right)^2}\)
Thực hiện phép tính
a/ (x+3)(x-3)
= x2 - 9
b/ 3x (5x2 + 2 - 1)
= 15x3 + 6x - 3x
= 15x3 + 3x
c/ (x-2)2 + (x-1) (x+5)
= x2 - 4x + 4 + x2 + 5x - x - 5
= 2x2 -1
a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
\(\dfrac{3}{x-1}+\dfrac{5}{x+1}-\dfrac{x}{x^2-1}\)
\(=\dfrac{3}{x-1}+\dfrac{5}{x+1}-\dfrac{x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{3\left(x+1\right)+5\left(x-1\right)-x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{3x+3+5x-5-x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{7x-2}{\left(x-1\right)\left(x+1\right)}\)