K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2021

`  (x+721) /2020+(x+21) /700+ (x+721)/2021=-1`

`<=>(x+721)/2020+(x+21) /700+ 1+ (x+721)/2021=0`

`<=>(x+721)/2020+(x+721) /700+ (x+721)/2021=0 `

`<=>(x +721) (1/2020+1/700+1/2021 )= 0` 

Vì `1/2020+1/700+1/2021>0` 

 `=>x+721 =0 <=>x=-721`

Vậy `S={-721}` 

Ta có: \(\dfrac{x+721}{2020}+\dfrac{x+21}{700}+\dfrac{x+721}{2021}=-1\)

\(\Leftrightarrow\dfrac{x+721}{2020}+\dfrac{x+721}{700}+\dfrac{x+721}{2021}=0\)

\(\Leftrightarrow\left(x+721\right)\left(\dfrac{1}{2020}+\dfrac{1}{700}+\dfrac{1}{2021}\right)=0\)

mà \(\dfrac{1}{2020}+\dfrac{1}{700}+\dfrac{1}{2021}>0\)

nên x+721=0

hay x=-721

Vậy: S={-721}

18 tháng 5 2021

GJKFD;LGJJGRJ

19 tháng 5 2021

Kết quả phép tính trên đâu mà bảo mình hộ bạn

25 tháng 4 2023

giup vs mn oiiiii

 

13 tháng 12 2022

Cứu với ;-;

8 tháng 4 2022

refer

https://lazi.vn/edu/exercise/634984/tim-x-biet-x-1-2019-x-2-2020-x-3-2021x-4-2022

8 tháng 4 2022

ủa giống chỗ nào :D?

16 tháng 4 2023

(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = (\(\dfrac{2021}{2}+1\))+(\(\dfrac{2020}{3}+1\))+....+(\(\dfrac{1}{2022}+1\))

(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = \(\dfrac{2023}{2}\)+\(\dfrac{2023}{3}\)+....+ \(\dfrac{2023}{2022}\)

(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = 2023.( \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\))

vậy x= 2023

1 tháng 8 2021

1/ \(\left(\dfrac{2021}{2020}+\dfrac{2020}{2021}\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)

=\(\left(\dfrac{2021}{2020}+\dfrac{2020}{2021}\right).0\)

=\(0\)

 

26 tháng 10 2021

mink chịu bài này nó rất khó

9 tháng 5 2021

ĐKXĐ : \(\left\{{}\begin{matrix}x>2019\\y>2020\\z>2021\end{matrix}\right.\)

Đặt \(\sqrt{x-2019}=a,......\)

Ta được PT : \(\dfrac{1-a}{a^2}+\dfrac{1-b}{b^2}+\dfrac{1-c}{c^2}+\dfrac{3}{4}=0\)

\(\Leftrightarrow\dfrac{1}{a^2}-\dfrac{1}{a}+\dfrac{1}{4}+\dfrac{1}{b^2}-\dfrac{1}{b}+\dfrac{1}{4}+\dfrac{1}{c^2}-\dfrac{1}{c}+\dfrac{1}{4}=0\)

\(\Leftrightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2=0\)

- Thấy : \(\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2\ge0,......\)

\(\Rightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2\ge0\)

- Dấu " = " xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{2}\\\dfrac{1}{b}=\dfrac{1}{2}\\\dfrac{1}{c}=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)

- Thay lại a. b. c ta được : \(\left\{{}\begin{matrix}\sqrt{x-2019}=2\\\sqrt{y-2020}=2\\\sqrt{z-2021}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2019=4\\y-2020=4\\z-2021=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2023\\y=2024\\z=2025\end{matrix}\right.\) ( TM )

Vậy ...