giúp e làm và vẽ hình với ạ e cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MB=MC=BC/2
Xét ΔMAB có MA=MB và \(\widehat{MBA}=60^0\)
nên ΔMAB đều
b: ΔBAM đều
mà BH là đường cao
nên H là trung điểm của AM
Xét ΔHNM vuông tại H và ΔHBA vuông tại H có
HM=HA
\(\widehat{HMN}=\widehat{HAB}\)(MN//AB)
Do đó: ΔHNM=ΔHBA
=>HN=HB
=>H là trung điểm của BN
Xét tứ giác ABMN có
H là trung điểm chung của AM và BN
BM=BA
Do đó: ABMN là hình thoi
c: ABMN là hình thoi
=>\(\widehat{NMB}=180^0-\widehat{MBA}=180^0-60^0=120^0\)
Xét ΔMNB có \(cosNMB=\dfrac{MN^2+MB^2-BN^2}{2\cdot MN\cdot MB}\)
\(\Leftrightarrow\dfrac{AB^2+AB^2-BN^2}{2\cdot AB\cdot AB}=-\dfrac{1}{2}\)
=>\(2AB^2-BN^2=-AB^2\)
=>\(BN^2=3AB^2\)
Xét ΔMAC có \(cosAMC=\dfrac{MA^2+MC^2-AC^2}{2\cdot MA\cdot MC}\)
=>\(\dfrac{AB^2+AB^2-AC^2}{2\cdot AB\cdot AB}=cos120=\dfrac{-1}{2}\)
=>\(2AB^2-AC^2=-AB^2\)
=>\(AC^2=3AB^2\)
=>\(AC^2=BN^2\)
=>AC=BN
Hình bạn vẽ hai đường chéo và chúng cắt nhau tại trung điểm của mỗi đường và vuông góc nhé.
Ta có: ABCD là hình thoi => \(AC\perp BD\)
\(AC\cap BD=\left\{O\right\}\)
Xét △AOB có:
\(AB^2=AO^2+OB^2\left(Pytago\right)\)
\(\Rightarrow AB^2=7^2+11^2\)
\(\Rightarrow AB=\sqrt{7^2+11^2}\approx13\left(cm\right)\)
Bài 2:
Ta có: \(3n^3+10n^2-5⋮3n+1\)
\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;-3;3\right\}\)
hay \(n\in\left\{0;-1;1\right\}\)
a: Xét ΔDBE có DB=DE
nên ΔDBE cân tại D
hay \(\widehat{DBE}=\widehat{DEB}\)
b: Ta có: \(\widehat{MBE}+\widehat{DEB}=90^0\)
\(\widehat{EBN}+\widehat{DBE}=90^0\)
mà \(\widehat{DBE}=\widehat{DEB}\)
nên \(\widehat{MBE}=\widehat{NBE}\)
hay BE là tia phân giác của góc MBN
c: Xét ΔMBE vuông tại M và ΔNBE vuông tại N có
BE chung
\(\widehat{MBE}=\widehat{NBE}\)
Do đó: ΔMBE=ΔNBE
Suy ra: EM=EN
d: Ta có: ΔMBE=ΔNBE
nên BM=BN
hay B nằm trên đường trung trực của MN(1)
Ta có:EM=EN
nên E nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra BE là đường trung trực của MN
a: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
=>\(\widehat{AMB}=90^0\)
b: Xét ΔOMC vuông tại M có MH là đường cao
nên \(HC\cdot HO=HM^2\left(1\right)\)
Xét ΔMAB vuông tại M có MH là đường cao
nên \(HA\cdot HB=HM^2\left(2\right)\)
Từ (1) và (2) suy ra \(HC\cdot HO=HA\cdot HB\)
c: Xét tứ giác AMBQ có
O là trung điểm của AB và MQ
Do đó: AMBQ là hình bình hành
Hình bình hành AMBQ có AB=MQ
nên AMBQ là hình bình hành
1.4:
a: CH=16^2/24=256/24=32/3
BC=24+32/3=104/3
AC=căn 32/3*104/3=16/3*căn 13
b: BC=12^2/6=24
AC=căn 24^2-12^2=12*căn 3
CH=24-6=18
Xét (O) có
ΔMEN nội tiếp
MN là đường kính
Do đó: ΔMEN vuông tại E
=>\(\widehat{MEN}=90^0\)
=>\(\widehat{FEN}=90^0\)
Xét tứ giác HFEN có
\(\widehat{FHN}+\widehat{FEN}=90^0+90^0=180^0\)
=>HFEN là tứ giác nội tiếp
=>H,F,E,N cùng thuộc một đường tròn