cho góc xOy, trên Ox lấy điểm A, trên oy lấy điểm B sao cho OA=OB gọi M là trung điểm của AB. chứng minh rằng OM là tia phân giác của góc xOy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác OMA và tam giác OMB ,có :
OM chung
góc O1 = góc O2 ( gt )
OA = OB ( gt )
=> tam giác OMA = tam giác OMB ( c-g-c )
=> MA = MB ( hai cạnh tương ứng )
=> tam giác AMB cân tại A
Vậy tam giác AMB cân
Xét \(\Delta\)AOM và \(\Delta\)BOM có:
OA=OB (gt)
góc AOM=góc BOM (do Oz là phân giác góc xOy)
OM chung
=> \(\Delta\)AOM = \(\Delta\)BOM (c.g.c) (1)
(1) => góc AMO=góc BMO (2 góc tương ứng)
=> MO là phân giác góc AMB (dpcm)
(1) => AM=BM (2 góc tương ứng)
=> \(\Delta\)ABM cân tại M (dhnb)
Xét \(\Delta\)ABM cân tại M có tia phân giác MO đồng thời là đường trung trực của cạnh AB (t/c các đường đặc biệt trong \(\Delta\)cân) (dpcm)
mãi mới có 1 bài toán lớp 7
hình :
xét \(\Delta OAI\)và \(\Delta OBI\)
OA = OB ( gt)
IA=IB ( I là trung điểm của AB)
OI - cạnh chung
=>\(\Delta OAI\)=\(\Delta OBI\)(c.c.c)
vì \(\Delta OAI\)=\(\Delta OBI\)
=>\(\widehat{AOI}\)=\(\widehat{BOI}\)(2 góc tương ứng)
OI nằm giữa 2 tia Ox và Oy
=> OI là pg của \(\widehat{xOy}\)
câu 2 và 3 dễ rồi bạn tự làm đi được ko z mik lười lắm
a: ΔOAB cân tại O
mà OC là phân giác
nên OC vuông góc AB và C là trung điểm của AB
b: Xét tứ giác OAMB có
C là trung điểm chung của OM và AB
=>OAMB là hình bình hành
=>OA//MB và OB//MA
Ta có: M là trung điểm của AB
=>MA=MB
Xét ΔOAM và ΔOBM có
OA=OB
AM=BM
OM chung
Do đó: ΔOAM=ΔOBM
=>\(\widehat{AOM}=\widehat{BOM}\)
=>\(\widehat{xOM}=\widehat{yOM}\)
mà tia OM nằm giữa hai tia Ox,Oy
nên OM là phân giác của \(\widehat{xOy}\)