K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2023

Bài 1: \(\overline{abcd}\) ⋮ 101 

 ⇒ \(\overline{ab}\) \(\times\) 100 + \(\overline{cd}\) ⋮ 101

 \(\overline{ab}\) \(\times\) 101 -  \(\overline{ab}\)  + \(\overline{cd}\) ⋮ 101

  \(\overline{ab}\) \(\times\) 101 - (\(\overline{ab}\) - \(\overline{cd}\)) ⋮ 101

                     \(\overline{ab}\) - \(\overline{cd}\)  ⋮ 101 (đpcm)

 

5 tháng 12 2023

238.(- 41)+ 41.138

giúp mình với huhu

làm ơn

10 tháng 10 2015

1/abcd chia hết cho 101 thì cd = ab, abcd = abab

Mà:

ab - ab = ab - cd = 0 (chia hết cho 101)

Ngược lại, ab - ab = cd - ab = 0 (chia hết cho 101)

2/n . (n+2) . (n+8)

n có 3 trường hợp:

TH1: n chia hết cho 3

Gọi tích đó là A.

A = n.(n+2).(n+8)

A = 3k.(3k+2).(3k+8)

=> A chia hết cho 3

TH2: n chia 3 dư 1

B = (3k+1).(3k+1+2).(3k+1+8)

B = (3k+1).(3k+3).(3k+9)

Vì 3k chia hết cho 3 và 3 chia hết cho 3 nên 3k+3 chia hết cho 3 => B chia hết cho 3

TH3: n chia 3 dư 2

TH này ko hợp lý, bạn nên xem lại đề

n . (n+4) . (2n+1)

bạn giải tương tự nhé

 

 

 

13 tháng 9 2016

gọi ab là xy

6x+11y chia hế

31y chia hết cho 31 ﴾vì 31y cũng chia hết cho 31﴿

=> 6x + 42y chia hết cho 31

=> 6﴾x+7y﴿ chia hết cho 31

Vì 6 và 31 nguyên tố cũng nhau nên

x+7y buộc phải chia hết cho 31 ﴾ĐPCM﴿ 

13 tháng 1 2016

Ta có ﴾6x+11y﴿ =31﴾x+6y﴿‐25﴾x+7y﴿

Do 6x+11y và 31﴾x+6y﴿ đều chia hết cho 31

=> 25﴾x+7y﴿ chia hết cho 31

Do ﴾25,31﴿=1 ﴾vì 25;31 là hai số nguyên tố cùng nhau﴿

Nên x+7y chia hết cho 31

Vậy ... 

13 tháng 1 2016

1) Xét hiệu:

               6 x (a+7b)-(6a+11b)

            = 6a+42b-6a-11b

           =31b

Vs b thuộc N thì 31b chia hết cho 31

         =>6 x (a+7b)-(6a+11b) chia hết cho 31

Mà a+7b chia hết cho 31 nên 6 x (a+7b) chia hết cho 31

            =>6a+11b chia hết cho 31

16 tháng 12 2021

\(a,S=\dfrac{\left(2014+4\right)\left[\left(2014-4\right):3+1\right]}{2}=\dfrac{2018\cdot671}{2}=677039\\ b,\forall n\text{ lẻ }\Rightarrow n+2013\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(1\right)\\ \forall n\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\\ c,M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{10}\right)\\ M=2\left(1+2+2^2+2^3\right)+...+2^{16}\left(1+2+2^2+2^3\right)\\ M=\left(1+2+2^2+2^3\right)\left(2+...+2^{16}\right)=15\left(2+...+2^{16}\right)⋮15\)

16 tháng 12 2021

Thank youvui

27 tháng 3 2019

19 tháng 1 2019

2 tháng 10 2020

Bg

C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))

=> n = 11k + 4  (với k \(\inℕ\))

=> n2 = (11k)2 + 88k + 42 

=> n2 = (11k)2 + 88k + 16  

Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5

=> n2 chia 11 dư 5

=> ĐPCM

C2: Ta có: n = 13x + 7 (với x \(\inℕ\))

=> n2 - 10 = (13x)2 + 14.13x + 72 - 10

=> n2 - 10 = (13x)2 + 14.13x + 39

Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13

=> n2 - 10 \(⋮\)13

=> ĐPCM

2 tháng 11 2019

b0a= 100.b+a=5.31.b+31.a-(30.a+55.b)=31.(a+5b)-5.(6.a+11.b)

Ta thấy 31.(a+5b) chia hết cho 31 và 6.a+11.b chia hết cho 31 nên 5.(6.a+11.b) chia hết cho 31 => b0a chia hết cho 31