Tìm x
12 x -33=3^2 . 3^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,12\left(x-1\right)=0\\ x-1=0\\ x=1\\ b,45+5\left(x-3\right)=70\\ 5\left(x-3\right)=25\\ x-3=5\\ x=8\\ c,3.x-18:2=12\\ 3.x-9=12\\ 3.x=21\\ x=7\)
Ta nhận thấy tổng các hệ số trong phương trình đã cho là
\(1-2\left(m-1\right)+2m-3=0\) nên pt này luôn có 1 nghiệm bằng 1, còn nghiệm kia là \(2m-3\). Do vai trò của \(x_1,x_2\) trong \(x^2+2x_1x_2-x_2=1\) là không như nhau nên ta phải chia làm 2TH:
TH1: \(x_1=1;x_2=2m-3\). Khi đó ta có
\(1+2\left(2m-3\right)-\left(2m-3\right)=1\) \(\Leftrightarrow2m-3=0\) \(\Leftrightarrow m=\dfrac{3}{2}\)
TH2: \(x_1=2m-3;x2=1\). Khi đó
\(\left(2m-3\right)^2+2\left(2m-3\right)-1=1\) \(\Leftrightarrow4m^2-8m+1=0\) \(\Leftrightarrow m=\dfrac{2\pm\sqrt{3}}{2}\)
Vậy để pt đã cho có 2 nghiệm \(x_1,x_2\) thỏa ycbt thì \(\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=\dfrac{2\pm\sqrt{3}}{2}\end{matrix}\right.\)
Ta thấy các hệ số \(a,b,c\) của phương trình đã cho thỏa mãn \(a-b+c=1-\left[-\left(m-3\right)\right]-m+2=1+m-3-m+2=0\)
nên phương trình đã cho sẽ có một nghiệm là \(-1\) và nghiệm kia là \(m-2\).
Trong hệ thức \(x_1^2+x_2=8\), vai trò của \(x_1,x_2\) không như nhau nên ta xét 2 trường hợp:
TH1: Nếu \(x_1=-1\) thì \(x_1^2+x_2=8\Leftrightarrow\left(-1\right)^2+m-2=8\Leftrightarrow m=9\).
TH2: Nếu \(x_2=-1\) thì \(x_1^2+x_2=8\Leftrightarrow\left(m-2\right)^2-1=8\Leftrightarrow\left(m-2\right)^2=9\) \(\Leftrightarrow m-2=\pm3\) \(\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-1\end{matrix}\right.\).
Vậy để phương trình đã cho có 2 nghiệm thỏa điều kiện đề cho thì \(\left[{}\begin{matrix}m=-1\\m=5\\m=9\end{matrix}\right.\)
Lời giải:
Để pt có 2 nghiệm thì $\Delta=(m-3)^2-4(-m+2)\geq 0$
$\Leftrightarrow (m-1)^2\geq 0$ (luôn đúng với mọi $m\in\mathbb{R}$)
Áp dụng định lý Viet:
$x_1+x_2=m-3$
$x_1x_2=-m+2$
$\Rightarrow x_1+x_2+x_1x_2=-1$
$\Leftrightarrow x_1+x_2+x_1x_2+1=0$
$\Leftrightarrow (x_1+1)(x_2+1)=0$
$\Leftrightarrow x_1=-1$ hoặc $x_2=-1$
TH1: $x_1=-1$
$x_2=\frac{-m+2}{x_1}=m-2$. Khi đó:
$x_1^2+x_2=8$
$\Leftrightarrow (-1)^2+(m-2)=8$
$\Leftrightarrow m=9$
TH2: $x_2=-1$
$x_1=\frac{-m+2}{x_2}=m-2$. Khi đó:
$x_1^2+x_2=8$
$\Leftrightarrow (m-2)^2-1=8$
$\Leftrightarrow (m-2)^2=9$
$\Leftrightarrow m-2=\pm 3\Leftrightarrow m=5$ hoặc $m=-1$
Trước hết ta xét ĐK của m để pt có hai nghiệm phân biệt
Ta có : Δ = b2 - 4ac = ( 2m - 3 )2 - 4( -2m + 2 )
= 4m2 - 12m + 9 + 8m - 8
= 4m2 - 4m + 1 = ( 2m - 1 )2 > 0 ∀ m ≠ 1/2
Vậy ∀ m ≠ 1/2 thì pt có hai nghiệm phân biệt
Theo hệ thức Viète ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2m+3\\x_1x_2=\dfrac{c}{a}=-2m+2\end{matrix}\right.\)
Khi đó x12 + x22 = 17
<=> ( x1 + x2 )2 - 2x1x2 - 17 = 0
<=> ( -2m + 3 )2 - 2( -2m + 2 ) - 17 = 0
<=> 4m2 - 12m + 9 + 4m - 4 - 17 = 0
<=> 4m2 - 8m - 12 = 0
<=> m2 - 2m - 3 = 0
<=> ( m - 3 )( m + 1 ) = 0
<=> m = 3 hoặc m = -1 (tm)
=> Chọn A.2
c) Theo định lí Vi-et ta có:
P = x 1 2 + x 2 2 = (x1 + x2 )2 - 2 x 1 x 2 = 4 m + 3 2 - 2( m 2 + 3)
= 4( m 2 + 6m + 9) - 2( m 2 + 3) = 2 m 2 + 24m + 30
\(2^3x+5^2x=2.\left(5^2+2^3\right)-33\)
\(8x+25x=2.\left(25+8\right)-33\)
\(8x+25x=2.33-33\)
\(8x+25x=66-33\)
\(8x+25x=33\)
\(x+\left(8+25\right)=33\)
\(x+33=33\)
\(x=0\)
\(15:\left(x+2\right)=\left(3^3+3\right):10\)
\(15:\left(x+2\right)=\left(27+3\right):10\)
\(15:\left(x+2\right)=30:10\)
\(15:\left(x+2\right)=3\)
\(x+2=15:3\)
\(x+2=5\)
\(x=3\)
=>12x-33=3^5
=>12x=276
=>x=23
12x-33=9.27
12x-33=243
12x=243+33
12x=276
x=276:12
x=23