CMR: \(\forall a,b,c,d>0\)ta có: \(\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+b\right)\left(c+d\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có BĐT \(\Leftrightarrow\left(\sqrt{ab}+\sqrt{cd}\right)^2\le\left(a+d\right)\left(b+c\right)\Leftrightarrow ab+cd+2\sqrt{abcd}\le ab+ac+bd+dc\)
\(\Leftrightarrow ac+bd\ge2\sqrt{abcd}\) (luôn đúng theo AM-GM)
p/s: mà cái BĐT bn cần chứng minh đó chính là BĐT Bunyakovsky đấy ^.^
\(A=\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\)
\(\Rightarrow A^2=\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\)\(=\left(\sqrt{c}.\sqrt{a-c}+\sqrt{c}.\sqrt{b-c}\right)^2\)
\(\Rightarrow A^2\le\left(c+b-c\right)\left(c+ a-c\right)\left(\text{ Bunhiacopxki}\right)\)
\(\Rightarrow A^2\le ab\Leftrightarrow A\le\sqrt{ab}\left(đpcm\right)\)
\(\)
1) Áp dụng BĐT bun-hi-a-cốp-xki ta có:
\(\left(a+d\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)
\(\Leftrightarrow\sqrt{\left(a+d\right)\left(b+c\right)}\ge\sqrt{ab}+\sqrt{cd}\)( vì a,b,c,d dương )
Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
Bđt Bu-nhia-cop-xki \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\), đẳng thức xảy ra khi \(ay=bx\)
a.
\(\left(2x+3y\right)^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left(2+3\right)\left(2x^2+3y^2\right)=5^2\)
\(\Rightarrow-5\le2x+3y\le5\)
b.
\(\sqrt{a+c}.\sqrt{b+c}+\sqrt{a-c}.\sqrt{b-c}\le\sqrt{a+c+a-c}.\sqrt{b+c+b-c}\)
\(=\sqrt{2a}.\sqrt{2b}=2\sqrt{ab}\)
Dấu bằng xảy ra khi \(\frac{\sqrt{a+c}}{\sqrt{a-c}}=\frac{\sqrt{b+c}}{\sqrt{b-c}}\), hay \(a=b\)
Thử lại với a = b thì \(VT=2a=2\sqrt{ab}=VP>\sqrt{ab}\) nên đề đã ra sai vế phải của bđt.
c.
bđt \(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)
d.
bđt \(\Leftrightarrow\left(a+c\right)^2+\left(b+d\right)^2\le a^2+b^2+c^2+d^2+2\sqrt{a^2+b^2}\sqrt{c^2+d^2}\)
\(\Leftrightarrow ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)
bđt trên luôn đúng vì theo bđt Bu-nhia-cop-xki, ta có:
\(\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\sqrt{\left(ac+bd\right)^2}=\left|ac+bd\right|\ge ac+bd\)
a) \(A=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2=2a+2b\le2\)
Vậy GTLN của A là 2 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}\\a+b=1\end{cases}\Leftrightarrow a=b=\frac{1}{2}}\)
b) Ta có : \(\left(\sqrt{a}+\sqrt{b}\right)^4\le\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4=2\left(a^2+b^2+6ab\right)\)
Tương tự : \(\left(\sqrt{a}+\sqrt{c}\right)^4\le2\left(a^2+c^2+6ac\right)\)
\(\left(\sqrt{a}+\sqrt{d}\right)^4\le2\left(a^2+d^2+6ad\right)\)
\(\left(\sqrt{b}+\sqrt{c}\right)^4\le2\left(b^2+c^2+6bc\right)\)
\(\left(\sqrt{b}+\sqrt{d}\right)^4\le2\left(b^2+d^2+6bd\right)\)
\(\left(\sqrt{c}+\sqrt{d}\right)^4\le2\left(c^2+d^2+6cd\right)\)
Cộng các vế lại, ta được :
\(B\le6\left(a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bd+2cd+2bc\right)=6\left(a+b+c+d\right)^2\)
\(\Rightarrow B\le6\)
Vậy GTLN của B là 6 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}=\sqrt{c}=\sqrt{d}\\a+b+c+d=1\end{cases}}\Leftrightarrow a=b=c=d=\frac{1}{4}\)