K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Bài 1:Cho tam giác ABC có  và BC=6cma)Trên nửa mặt phẳng bờ là đường thẳng BC có chứa A vẽ tia Bx  BC.Giải thích vì sao BA là tia phân giác của góc xBCb)Đường thẳng trung trực a của đoạn thẳng BC cắt các đường thẳng AB và AC tại E và F.Tính số đo của góc AEFc)Qua C vẽ đường thẳng song song với AB,đường thẳng này cắt đường thẳng a tại N.Tính số đo góc ACNd)So sánh 2 góc ENC và xBABài 2:Cho...
Đọc tiếp

 Bài 1:Cho tam giác ABC có [​IMG] và BC=6cm
a)Trên nửa mặt phẳng bờ là đường thẳng BC có chứa A vẽ tia Bx [​IMG] BC.Giải thích vì sao BA là tia phân giác của góc xBC
b)Đường thẳng trung trực a của đoạn thẳng BC cắt các đường thẳng AB và AC tại E và F.Tính số đo của góc AEF
c)Qua C vẽ đường thẳng song song với AB,đường thẳng này cắt đường thẳng a tại N.Tính số đo góc ACN
d)So sánh 2 góc ENC và xBA
Bài 2:Cho tam giác ABC có [​IMG] 
a)Tia phân giác của góc ABc cắt AC tại D.Qua A vẽ đường thẳng song song với BD,đường thẳng này cắt đường thẳng BC tại E.So sánh 2 góc BEA và BAE
b)Qua A vẽ đường thẳng xy song song BC.Tính số đo góc BAI
Bài 3:Cho tam giác ABC có [​IMG] 
a)Hai tia phân giác của góc ABC và góc ACB cắt nhau tại I.Qua I vẽ đường thẳng song song với BC,đường thẳng này cắt các đường thẳng AB và AC tại D và E.Tính số đo góc ACI và góc CIE
b)So sánh 2 góc DIB và ABI
c)Qua A kẻ AH [​IMG] tại H,qua C kẻ CK [​IMG] tại K.Giải thích vì sao AH//CK
d)Tính số đo góc CAH
Bài 8:Cho tam giác ABC có BC=8cm và [​IMG] 
a)Qua A vẽ đường thẳng xy song song với BC(tia Ax thuộc nửa mặt phẳng bờ là đường thẳng AC có chứa điểm B).Tính số đo góc yAB và BAC
b)Vẽ AH [​IMG] tại H.Tính số đo các góc BAH và CAH
Bài 9:Cho tam giác ABC có BC=6cm, [​IMG] 
a)Qua B kẻ [​IMG] tại D và [​IMG] tại E,2 đường thẳng BD và CE cắt nhau tại H.Qua B và C lần lượt vẽ các đường thẳng vuông góc với AB và AC,2 đường thẳng này cắt nhau tại K.Vì sao CK//BD và BK//CE?
b)Tính số đo góc DBC
c)TÍnh số đo các góc HCB và EHD

0
8 tháng 10 2017

sai rồi

11 tháng 7 2019

Câu hỏi của Mink Pkuong - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo link này nhé!

Bài 1:Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EMa) Chứng minh ( CM ) : tam giác ABM = tam giác ACMb) CM : AM vuông góc BCc) CM : tam giác AEH = tam giác CEMd) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm...
Đọc tiếp

Bài 1:

Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EM

a) Chứng minh ( CM ) : tam giác ABM = tam giác ACM

b) CM : AM vuông góc BC

c) CM : tam giác AEH = tam giác CEM

d) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm H, A, K thẳng hàng

 

Bài 2:

Cho tam giác ABC có góc B < 90 độ. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ tia Bx khác BC, trên tia Bx lấy điểm D sao cho BD = BC. Trên nửa mặt phẳng bờ AB chứa điểm C vẽ tia By vuông góc với BA, trên tia By lấy E sao cho BE = BA

a) CMR : DA = EC

b) DA vuông góc EC

 

Bài 3:

Cho tam giác ABC vuông tại B và AC = 2AB. Kẻ phân giác AE ( E thuộc BC ) của góc A

a) CM : EA = EC

b) Tính góc A và góc C của tam giác ABC

 

GIÚP TỚ VỚI Ạ. TỚ ĐANG CẦN!!

4
6 tháng 1 2018

Bài 1:

K D A H E B M C

a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A

=> đường trung tuyến AM đồng thời là đường cao

Vậy AM vuông góc BC

c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)

\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)

d) Ta có KB//AM(vì vuông góc với BM 

\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)

Xét tam giác KDB và MDA (2 góc đối đỉnh)

\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)

\(\Rightarrow KD=DM\left(1\right)\)

Tam giác ABM vuông tại M có trung tuyến MD 

Nên : MD=BD=AD(2)

Từ (1) và (2) ta có : KD=DM=DB=AD

Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)

Nên : Tam giác KAM vuông tại A

Tương tự : Tam giác MAH vuông tại A

Ta có: Qua1 điểm A thuộc AM  có 2 đường KA và AH cùng vuông góc với AM 

Nên : K,A,H thẳng thàng

6 tháng 1 2018

Bài 2 : 

x D A B C E y

a) Ta có tam giác DAB=tam giác CEB(c.g.c)

Do : DA=CB(gt)

       BE=BA(gt)

       \(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))

=> DA=EC

b) Do tam giác DAB=tam giác CEB(ở câu a) 

=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)

Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC) 

=> \(\widehat{BCE}+\widehat{BCD}=90^0\)

=> DA vuông góc với EC

11 tháng 7 2019

A B C N M

a) Xét tam giác vuông ABM và tam giác vuông NCA có:

NC=AB( gt)

CA=BM ( gt)

=> Tam giác ABM = Tam giác NCA 

b) Xét  tam giác vuông NCA và tam giác vuông BAC có:

AC chung 

NC=BA

=> Tam giác NCA =Tam giác BAC

=> ^NAC =^BCA

mà hai góc trên ở vị trí so le trong

=> NA//BC (1)

c) Xét tam giác vuông ABC và tam giác vuông BMA có:

AB chung

AC=BM

=> Tam giác vuông ABC = Tam giác vuông BMA

=> ^MAB=^ABC

mà hai góc trên ở vị trí so le trong 

=> MA//CB (2)

từ (1) , (2) => N, A, M thẳng hàng 

Ta lại có: NA=AM ( Tam giác ABM =tam giác NCA)

=> A là trung điểm MN

Bài 1Cho tam giác ABC có ba góc nhọn, gọi M là trung điểm của BC . Trên nửa mặt phẳng chứa điểm C bờ là đường thẳng AB vẽ đoạn thẳng AE vuông góc với AB sao cho AE= AB  . Trên nửa mặt phẳng chứa điểm B bờ là đường thẳng AC vẽ đoạn thẳng AD vuông góc với AC sao cho AD = AC.        a) Chứng minh: BD = CE .        b) Trên tia đối của tia MA lấy N sao cho MN = MA . Chứng minh: tam giác ADE = tam giác CAN .        c) Gọi...
Đọc tiếp

Bài 1Cho tam giác ABC có ba góc nhọn, gọi M là trung điểm của BC . Trên nửa mặt phẳng chứa điểm C bờ là đường thẳng AB vẽ đoạn thẳng AE vuông góc với AB sao cho AE= AB  . Trên nửa mặt phẳng chứa điểm B bờ là đường thẳng AC vẽ đoạn thẳng AD vuông góc với AC sao cho AD = AC.

        a) Chứng minh: BD = CE .

        b) Trên tia đối của tia MA lấy N sao cho MN = MA . Chứng minh: tam giác ADE = tam giác CAN .

        c) Gọi I là giao điểm của DE và AM . Chứng minh: AD^2 + IE^2/ DI^2+ AE^2 = 1.

Bài 2 Cho tam giác ABC vuông cân tại A . Gọi M là trung điểm của BC , điểm thuộc đoạn BM (D khác B và M ). Kẻ các đường thẳng BH, CI lần lượt vuông với đường thẳng AD tại H và I .                 

Chứng minh rằng:

a. BH = AI .

b.Góc BAM = góc ACM

c. Tam giác  vuông cân

có vẽ hình. Em cần gấp ạ

0
12 tháng 6 2017

Bài 1:

a) Ta có: góc xDc = góc ACB ( 2 góc so le trong và Dx // BC)

Mà góc xDc = 70 độ (gt)

Nên góc ACB = 70 độ

b) Ta có:

góc BAD + góc BAC = 180 độ do 2 góc kề bù

góc BAD = 180 độ - 40 độ = 140 độ

Mà góc BAy = 1/2 góc BAD do Ay là tia phân giác của góc BAD

Nên góc BAy = 1/2 .140 độ = 70 độ   (1)

Xét tam giác ABC dựa vào ĐL tổng ba góc trong tam giác ta có:

góc ABC = 180 độ - góc BAC - góc ACB = 180 độ - 40 độ - 70 độ = 70 độ   (2)

Từ (1) và (2) suy ra góc BAy = góc ABC

Mà 2 góc này nằm ở vị trí so le trong 

Nên Ay // BC.

Bài 2:

a) Ta có: góc ABM = góc BMN ( 2 gcó o le trong và AB // NM)

Mà góc ABM = góc xBC ( Bx là tia phân giác của góc ABC) 

Nên góc xBC = góc BMN.

b) Ta có: góc MNy = góc BMN ( 2 góc so le trong và Bx // Ny)

Mà  góc xBC = góc BMN ( chứng minh câu a)

Nên góc xBC = góc MNy

Mặt khác góc xBC = góc CNy ( 2 góc đồng vị và Bx // Ny)

=.> góc MNy = góc CNy

=> Ny là tia phân giác của góc MNC

17 tháng 8 2018

Bài giải : 

Bài 1:

a) Ta có: góc xDc = góc ACB ( 2 góc so le trong và Dx // BC)

Mà góc xDc = 70 độ (gt)

Nên góc ACB = 70 độ

b) Ta có:

góc BAD + góc BAC = 180 độ do 2 góc kề bù

góc BAD = 180 độ - 40 độ = 140 độ

Mà góc BAy = 1/2 góc BAD do Ay là tia phân giác của góc BAD

Nên góc BAy = 1/2 .140 độ = 70 độ   (1)

Xét tam giác ABC dựa vào ĐL tổng ba góc trong tam giác ta có:

góc ABC = 180 độ - góc BAC - góc ACB = 180 độ - 40 độ - 70 độ = 70 độ   (2)

Từ (1) và (2) suy ra góc BAy = góc ABC

Mà 2 góc này nằm ở vị trí so le trong 

Nên Ay // BC.

Bài 2:

a) Ta có: góc ABM = góc BMN ( 2 gcó o le trong và AB // NM)

Mà góc ABM = góc xBC ( Bx là tia phân giác của góc ABC) 

Nên góc xBC = góc BMN.

b) Ta có: góc MNy = góc BMN ( 2 góc so le trong và Bx // Ny)

Mà  góc xBC = góc BMN ( chứng minh câu a)

Nên góc xBC = góc MNy

Mặt khác góc xBC = góc CNy ( 2 góc đồng vị và Bx // Ny)

=.> góc MNy = góc CNy

=> Ny là tia phân giác của góc MNC