Tìm x:
(x-1).(x-3)<0
help me pls
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\cdot\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{0;-2\right\}\)/
`@` `\text {Ans}`
`\downarrow`
Ta có:
`A(x) = B(x)* Q(x) - x + 1`
`A(x) = x^3-2x^2+x`; `Q(x) = x - 1`
`<=> B(x) * (x - 1) - x + 1 = x^3 - 2x^2 + x`
`<=> B(x) * (x - 1) = x^3 - 2x^2 + x + x - 1`
`<=> B(x) * (x - 1) = x^3 - 2x^2 + 2x - 1`
`<=> B(x) = (x^3 - 2x^2 + 2x - 1) \div (x - 1)`
`<=> B(x) = x^2 - x + 1`
Vậy, `B(x) = x^2 - x + 1.`
A(x)=B(x)*Q(x)-x+1
=>x^3-2x^2+x=B(x)(x-1)-x+1
=>B(x)*(x-1)=x^3-2x^2+x+x-1=x^3-2x^2+2x-1
=>\(B\left(x\right)=\dfrac{x^3-2x^2+2x-1}{x-1}=\dfrac{\left(x-1\right)\left(x^2+x+1\right)-2x\left(x-1\right)}{x-1}\)
=>B(x)=x^2+x+1-2x
=>B(x)=x^2-x+1
2x(x-7)-4(x-7)=0
<=>(2x-4)(x-7)=0
<=>2x-4=0 hoặc x-7=0
<=>x=2 hoặc x=7
2x( x - 7 ) - 4( x - 7 ) = 0
=> 2x2 - 14 - 4x + 28 = 0
=> 2x2 - 4x + 14 = 0
tự giải nốt dùng hằng đẳng thức ( a - b )2
(3 -x ) . ( 4 - x ) . ( 5 - x ) = 0
⇒ 3 - x = 0 hoặc 4 - x = 0 hoặc 5-x = 0
⇒ x = 3 hoặc x = 4 hoặc x = 5
Vậy x = 3 hoặc x = 4 hoặc x = 5 .
\(\text{∘ Ans}\)
\(\downarrow\)
\(\left(3-x\right)\cdot\left(4-x\right)\cdot\left(5-x\right)=0\)
`TH1:`
`3 - x = 0`
`\Rightarrow x = 3-0`
`\Rightarrow x = 3`
`TH2:`
`4 - x = 0`
`\Rightarrow x = 4 - 0`
`\Rightarrow x = 4`
`TH3:`
`5 - x = 0`
`=> x = 5 - 0`
`=> x = 5`
Vậy, `x = {3; 4; 5}.`
\(\text{x.(-10)=0}\)
\(\text{x = 0:(-10)}\)
\(\text{x = 0}\)
\(\text{Vậy x=0}\)
\(\dfrac{1}{5}\times x-\dfrac{2}{3}=\dfrac{1}{10}\times x+\dfrac{5}{6}\)
\(\dfrac{1}{5}x-\dfrac{2}{3}-\dfrac{1}{10}x-\dfrac{5}{6}=0\)
\(\dfrac{1}{5}x-\dfrac{1}{10}x-\dfrac{2}{3}-\dfrac{5}{6}=0\)
\(\dfrac{1}{10}x-\dfrac{3}{2}=0\)
\(\dfrac{1}{10}x=\dfrac{3}{2}\)
\(x=15\)
\(\dfrac{1}{5}\).x - \(\dfrac{2}{3}\) = \(\dfrac{1}{10}\).x + \(\dfrac{5}{6}\)
⇒ \(\dfrac{1}{5}\).x - \(\dfrac{1}{10}\).x = \(\dfrac{5}{6}\) + \(\dfrac{2}{3}\)
⇒ \(\dfrac{2}{10}\).x - \(\dfrac{1}{10}\).x = \(\dfrac{5}{6}\) + \(\dfrac{4}{6}\)
⇒ \(\dfrac{1}{10}\).x = \(\dfrac{9}{6}\)
⇒ x = \(\dfrac{9}{6}\) : \(\dfrac{1}{10}\)
⇒ x = \(\dfrac{9}{6}\) . 10
⇒ x = \(\dfrac{90}{6}\)
⇒ x = 15
Vậy x = 15
(x - 1)(x - 3) < 0
⇒ x - 1 > 0 và x - 3 < 0
Hoặc x - 1 < 0 và x - 3 > 0
TH1: x - 1 > 0 và x - 3 < 0
*) x - 1 > 0
x > 0 + 1
x > 1 (1)
*) x - 3 < 0
x < 0 + 3
x < 3 (2)
Từ (1) và (2) ⇒ 1 < x < 3
TH2: x - 1 < 0 và x - 3 > 0
*) x - 1 < 0
x < 1 (3)
*) x - 3 > 0
x > 3 (4)
Từ (3) và (4) ⇒ không tìm được x thỏa mãn trường hợp 2
Vậy 1 < x < 3 thì (x - 1)(x - 3) < 0
(x-1)(x-3)<0
=> x-1 > 0 và x - 3 < 0 ( Vì : x-1 > x-3 với mọi x )
=> x>1 và x < 3
=> 1<x<3