Cho đường tròn (O;R) và điểm A cố định ở ngoài đường tròn . Vẽ đường thẳng d vuông góc với OA tại A . Trên d lấy điểm M . Qua M kẻ 2 tiếp tuyến ME,MF tới đường tròn (O;R) tiếp điểm lần lượt là E và F . Nối EF cắt OM tại H,cắt OA tại B
a) Chứng minh OM vuông góc với EF
b) Cho biết R`=6` cm,OM`=10` cm . Tính OH
c) Chứng minh 4 điểm A,B,H,M cùng thuộc một đường tròn
a:Xét (O) có
MF,ME là tiếp tuyến
Do đó: MF=ME
=>M nằm trên đường trung trực của FE(1)
OE=OF
=>O nằm trên đường trung trực của EF(2)
Từ (1) và (2) suy ra OM là đường trung trực của EF
=>OM\(\perp\)EF tại H và H là trung điểm của EF
b: ΔOMF vuông tại F
=>\(FO^2+FM^2=OM^2\)
=>\(FM^2=10^2-6^2=64\)
=>\(FM=\sqrt{64}=8\left(cm\right)\)
Xét ΔOFM vuông tại F có FH là đường cao
nên \(OH\cdot OM=OF^2\)
\(\Leftrightarrow OH\cdot10=6^2=36\)
=>OH=36/10=3,6(cm)
c: Xét tứ giác BHMA có
\(\widehat{BHM}+\widehat{BAM}=90^0+90^0=180^0\)
=>BHMA là tứ giác nội tiếp
=>B,H,M,A cùng thuộc một đường tròn