K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2018

a, n(n+1)(n+2)

nhận xét : 

n; n+1; n+2 là 3 số tự nhiên liên tiếp

=> có 1 số chia hết cho 2 và có 1 số chia hết cho 3             (1)

ƯCLN(2;3) = 1   (2)

(1)(2) => n(n+1)(n+2) \(⋮\) 6

b, 3a + 5b \(⋮\) 8

=> 5(3a + 5b) \(⋮\) 8

=> 15a + 25b \(⋮\) 8

3(5a + 3b) = 15a + 9b

xét hiệu : 

(15a + 25b) - (15a + 9b)

= 15a + 25b - 15a - 9b

= (15a - 15a) + (25b - 9b)

= 0 + 16b

= 16b và (3;5) = 1

=> 5a + 3b \(⋮\) 8

c, làm tương tự câu b

16 tháng 12 2023

\(9a+7b⋮17\Rightarrow3\left(9a+7b\right)=27a+21b⋮17\)

\(17a+17b⋮17\)

\(\Rightarrow27a+21b-17a-17b=10a+4b=2\left(5a+2b\right)⋮17\)

\(\Rightarrow5a+2b⋮17\)

16 tháng 12 2023

5a+2b175�+2�⋮17

60a+24b17⇒60�+24�⋮17

(51a+17b)+(9a+7b)17⇒(51�+17�)+(9�+7�)⋮17

Do 51a+17b179a+7b17đpcm

23 tháng 10 2015

2) Xét tổng (11a+2b)+(a+34b) =12a +36b

=> a+34b=(12a+36b)-(11a+2b)

Mà 12a+36b chia hết cho 12 ; 11a+2b chia hết cho 12

=>(12a+36b)-(11a+2b) chia hết cho 12

=>a+34b chia hết cho 12

a: TH1: n=2k

A=(n+2)(n+5)

=(2k+2)(2k+5)

=2(k+1)(2k+5)\(⋮\)2(1)

TH2: n=2k+1

\(A=\left(n+2\right)\left(n+5\right)\)

\(=\left(2k+1+2\right)\left(2k+1+5\right)\)

\(=\left(2k+3\right)\left(2k+6\right)\)

\(=2\left(k+3\right)\left(2k+3\right)⋮2\)(2)

Từ (1),(2) suy ra \(A⋮2\)

b: TH1: n=3k

\(B=\left(2n+3\right)\left(n+6\right)\left(5n+2\right)\)

\(=\left(2\cdot3k+3\right)\left(3k+6\right)\left(5\cdot3k+2\right)\)

\(=3\left(k+2\right)\left(6k+3\right)\left(15k+2\right)⋮3\left(3\right)\)

TH2: n=3k+1

\(B=\left(2n+3\right)\left(n+6\right)\left(5n+2\right)\)

\(=\left[2\left(3k+1\right)+3\right]\left[3k+1+6\right]\left[5\left(3k+1\right)+2\right]\)

\(=\left(6k+2+3\right)\left(3k+7\right)\left(15k+5+2\right)\)

=(6k+5)(3k+7)(15k+7)

=>B không chia hết cho 3

Vậy: B không chia hết cho 3 với mọi n

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Bài 1:

$5a+8b\vdots 3$

$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$

$\Leftrightarrow 5a+8b-6b-6a\vdots 3$

$\Leftrightarrow 2b-a\vdots 3$

 Ta có đpcm. 

 

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.

Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$

Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ

$\Rightarrow n(n+1)\vdots 2$

$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$

Mặt khác:

Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$

Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$ 

$\Rightarrow A\vdots 3$

Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$

$\Rightarrow A\vdots 3$

Tóm lại $A\vdots 3(2)$

Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$