K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBKC có

KH,CA là đường cao

KH cắt CA tại E

=>E là trực tâm

=>BE vuông góc KC

b: Xét ΔBAC có BE là phân giác

nên AE/AB=EC/BC

mà AB<BC

nên AE<EC

c: Xét ΔBAC có

AD,BE là phân giác

AD cắt BE tại I

=>I cách đều ba cạnh của ΔABC

3 tháng 2 2019

tu ve hinh : 

a, xet tamgiac ABE va tamgiac HBE co : BE chung

goc EAB = goc EHB = 90 do ... 

goc ABE  = gocEBH do BE la phan giac cua goc ABH 

=> tamgiac ABE = tamgiac HBE (ch - gn)

b, xet tamgiac EAK va tamgiac EHC co : 

goc EHC = goc EAK = 90 ...

EA = EH do tamgiac ABE = tamgiac HBE (cau a)

goc KEA = goc HEC (doi dinh)

=> tamgiac EAK = tamgiac EHC (cgv - gnk)

=> EK = EC (dn)

c, chung minh theo truong hop ch-cgv 

13 tháng 7 2017

a) xét tam giác ABE vuông tại A và tam giác HBE vuông tại H có 

 gócABE = gócHBE ( BE là phân giác gócABH) 

BE chung

 \(=>\)tam giác vuông ABE = tam giác vuông HBE ( cạnh huyền góc nhọn )

\(=>\)AE=EH ( 2 cạnh tương ứng)

b) xét tam giác AKE vuông tại A và tam giác HCE vuông tại H có

AE=EH ( theo câu a)

góc AEK = HEC ( 2 góc đối đỉnh ) 

\(=>\)tam giác vuông AKE = tam giác vuông HCE ( cạnh góc vuông - góc nhọn kề cạnh ấy)

\(=>\)EK=EC ( 2 cạnh tương ứng ) 

17 tháng 5 2018

a) Xét tam giác ABE vuông tại A và ta giác HBE vuông tại H

có: BE là cạnh chung

góc ABE = góc HBE (gt)

\(\Rightarrow\Delta ABE=\Delta HBE\left(ch-gn\right)\)

b) ta có: \(\Delta ABE=\Delta HBE\left(pa\right)\)

=> AE = HE ( 2 cạnh tương ứng)

Xét tam giác AEM vuông tại A và tam giác HEC vuông tại H

có: AE = HE ( cmt)

góc AEM = góc HEC ( đối đỉnh)

\(\Rightarrow\Delta AEM=\Delta HEC\left(cgv-gn\right)\)

=> EM = EC ( 2 cạnh tương ứng)

c) Gọi BE cắt CM tại K

ta có: \(\Delta ABE=\Delta HBE\left(pa\right)\)

=> AB = HB ( 2 cạnh tương ứng) (1)

ta có: \(\Delta AEM=\Delta HEC\) ( chứng minh phần b)

=> AM = HC ( 2 cạnh tương ứng) (2)

Từ (1);(2) => AB + AM = HB + HC

                => BM = BC (*)

Xét tam giác BMH vuông tại H

có: BM > MH ( quan hệ cạnh huyền, cạnh góc vuông) (**)

Từ (*), (**) => BC>MH

mk ko bít kẻ hình trên này, sorry bn nha!

      

15 tháng 5 2015

đây nè :          http://d.violet.vn//uploads/resources/631/3437561/preview.swf

ko có câu c

đúng nha

15 tháng 5 2015

cam on ban nieu nha

 

17 tháng 4 2016

a) Ta có ^BEA = 90 - ^ ABE

             ^BEH = 90 - ^EBH 

mà ^ABE = ^EBH ( do BE là tia phân giác)

=> ^BEA=^BEH

Xét tam giác ABE và Tam giác HBE có

           ^ABE=^BEH (gt)

            BE chung 

            ^BEA=^BEH (cmt)

=> tam giác ABE=Tam giác HBE

b) chỉ cần chứng minh BE là đườn trug tuyến là xog

9 tháng 5 2023

Xét ΔABE và ΔHBE : có :

^ BAE = ^ BHE =  90° ( giả thiết )

    BE chung

  ^ABE = ^HBE ( giả thiết )

=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )

b) có ΔABE=ΔHBE ( câu a )

=> BA =BH (hai cạnh tương ứng )

gọi I là giao điểm của BE và AH .

xét ΔABI và ΔHBI:có:

BA=BH (cmt ) 

^ABE = ^HBE ( giả thiết )

BI chung

=>ΔABI = ΔHBE ( c-g-c )

=> AE=EH ( hai cạnh tương ứng ) (1)

=> ^BIA = ^BIH ( hai góc tương ứng )

có  ^BIA + ^BIH = 180°

=> ^BIA = ^BIH = 180°:2=90° 

=>BI vuông góc AH (2) 

từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH

c, xét  ΔAEK và  ΔHEC

có: ^EAK = ^EHC = 90° (gt)

        AE=EH (ΔABE=ΔHBE )

      ^AEK=^HEC ( hai góc đối đỉnh )

=>ΔAEK và  ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )

=> EK=EC ( hai cạnh tương ứng )

d, có : AE<EK  (trong Δ vuông cạnh huyền là cạnh lớn nhất )

     mà EK=EC (câu c)

     nên AE<EC (đpcm) 

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

EB chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

=>BA=BH; EA=EH

=>EB là trung trực của AH

c: EA=EH

mà EA<EK

nên EH<EK

d: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBK chung

=>ΔBHK=ΔBAC

=>BK=BC

=>ΔBKC cân tại B

mà BE là phân giác

nen BE vuông góc KC

bạn có thể cho mh xem hình được k