K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2022

9999999999999

23 tháng 2 2022

 a) Áp dụng định lý Py - ta - go  vào \(\Delta ABC\)vuông tại \(A\)

\(BC^2=AB^2+AC^2\)

\(BC^2=3^2+3^2\Rightarrow BC=3\sqrt{2}cm=18\left(cm\right)\)

b) Áp dụng định lý Py - ta - go  vào \(\Delta ABC\)vuông tại \(A\)ta có :

\(BC^2+AB^2+AC^2\)

\(BC^2=4^2+6^2\)

\(BC=28\left(cm\right)\)

c) Áp dụng định lý Py - ta - go  vào \(\Delta ABC\)vuông tại \(A\), ta có :

\(BC^2=AB^2+AC^2=BC^2=5^2+3^2\Rightarrow BC=25+9=34\left(cm\right)\)

d) Áp dụng định lý Py - ta - go  vào \(\Delta ABC\)vuông tại \(A\)ta có :

\(BC^2=AB^2+AC^2=BC^2=5^2+5^2=5\sqrt{2}=50\left(cm\right)\)

d) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=\left(a\sqrt{3}\right)^2+a^2=4a^2\)

hay BC=2a

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{a}{2a}=\dfrac{1}{2}\)

\(\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{a\sqrt{3}}{2a}=\dfrac{\sqrt{3}}{2}\)

\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{a}{a\sqrt{3}}=\dfrac{\sqrt{3}}{3}\)

\(\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)

2 tháng 5 2016

Ta có : 3^2+4^2=9+16=25 

Căn bậc hai của 25 bằng 5 suy ra tam giac ABC vuong tai A 

2 tháng 5 2016

ta có:

\(AB^2+AC^2=3^2+4^2=9+16=25\)

\(BC^2=5^2=25\)

=> tam giác ABC vuông tại A

Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B làA. 50° B. 60° C. 55° D. 75°Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A làA. 40° C. 15° C. 105° D. 30°Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:A MN^+ NP^= MP^B MP ^+NP^ =MN^C NM= NPD pN^+ MP^= MN^Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC làA. 17 cm B. 13 cm C. 14 cm D. 14,4 cmCâu 5. Cho tam giác...
Đọc tiếp

Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B là
A. 50° B. 60° C. 55° D. 75°
Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A là
A. 40° C. 15° C. 105° D. 30°
Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:

A MN^+ NP^= MP^
B MP ^+NP^ =MN^
C NM= NP
D pN^+ MP^= MN^

Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC là
A. 17 cm B. 13 cm C. 14 cm D. 14,4 cm
Câu 5. Cho tam giác HIK vuông tại I, IH = 10 cm, HK = 16 cm. Độ dài cạnh IK là
A. 26 cm
B. \(\sqrt{156}cm\)
\(\sqrt{12}cm\)
 D. 156cm

Câu 6. Cho tam giác ABC cân tại A, AH vuông góc với BC tại H, AB = 10cm. BC = 12 cm.
Độ dài AH bằng
A. 6cm. B. 4 cm C. 8cm D. 64 cm
Câu 7. Cho tam giác đều ABC có độ dài cạnh là 6 cm. Kẻ AI vuông góc với BC. Độ dài cạnhAI là
A. \(3\sqrt{3}cm\)
B. 3 cm
C. \(3\sqrt{2}\)
D. 4 cm

Câu 8. Một chiếc tivi có chiều rộng là 30 inch, đường chéo là 50 inch. Chiều dài chiếc tivi đó là
A. 20 inch B. 1600 inch 3400 inch. D. 40 inch
Câu 9. Tam giác vuông là tam giác có độ dài ba cạnh là:
A. 3cm, 4cm,5cm B. 5cm, 7cm, 8cm C. 4cm, 6 cm, 8cm D. 3cm, 5cm, 7cm
Câu 10. Tam giác ABCcân tại A. Biết AH = 3cm, HC = 2 cm. Khi đó độ dài BC bằng

A. 5 cm
B. 4cm
C.\(2\sqrt{5}cm\)
\(2\sqrt{3}cm\)
Giups mik vs mik đg cần gấp

 

0
28 tháng 3 2021

 a, Xét hai tam giác AHB và tam giác AHC có:

AC= AB (cân) (gt)

AH là cạnh chung

góc ABH= góc ACH 

=> hai tam giác bằng nhau theo trường hợp cạnh huyền góc nhọn

b, ta có tam giác ABC cân 

và AH là đường cao => AH cũng là đường trung tuyến của tam giác ABC

c, bạn áp dụng định lí py ta go là ra ngay

12 tháng 7 2017

\(\Delta ABC\left(\widehat{A}=90^0\right)\)

\(BC^2=AB^2+AC^2\)

\(BC^2=\left(3\sqrt{3}\right)^2+\left(2\sqrt{5}\right)^2=47\)

\(\Rightarrow BC=\sqrt{47}\left(cm\right)\)

\(\sin\widehat{C}=\frac{3\sqrt{3}}{\sqrt{47}}\Rightarrow\widehat{C}\approx55^0\)

\(\widehat{B}=90^0-\widehat{C}\)(2 góc phụ nhau)

\(\widehat{B}=90^0-55^0=35^0\)

Chúc bạn học tốt.

12 tháng 7 2017

cảm ơn bạn 

5 tháng 8 2018

HS tự làm

3 tháng 4 2017

a) Tam giác ABC có AB2+AC2=BC2( 32+42=52)

=> Tam giác ABC vuông tại A

b)Xét tam giác DBA và tam giác DBE có

AB=BE

DBA=DBE ( vì BD là phân giác của góc ABC)

Cạnh BD chung

=> \(\Delta DBA=\Delta DBE\left(c.g.c\right)\)

c) Gọi O là giao điểm của BD và AE

Có tam giác DBA=tam giác DBE ( theo câu b)

  =>   AD=DE

Ta có AB=BE và AD=DE hay BD là đường trung trực của AE

Vậy \(AE⊥BD\)

d) Xét tam giác DCE vuông và tam giác DFA vuông có

AD=DE

FDA=CDE ( 2 góc đối đỉnh)

=> tam giác DCE= tam giác DFA ( cạnh góc vuông- góc nhọn)

=> DF=DC

=> tam giác DCF cân tại D

Tam giác DEA có DA=DE => Nó cân tại D

Mà CDF=ADE( 2 góc đối đỉnh)

=> FCD+DFC=DAE+DEA

=>2.FCD=2.DAE

=> FCD=DAE

Mà FCD và DAE là 2 góc so le trong

=> AE//CF

Cho tam giác ABC vuông tại A ( AB < AC), BD là đường phân giác của góc B (D thuộc AC). Vẽ DE vuông góc BC tại E.                                                                                                           a) Cho biết AB = 3 cm AC = 4 cm .Tính BC                                                                             b) Chứng minh BD là đường trung trực của AE                                                                         c) Chứng minh...
Đọc tiếp

Cho tam giác ABC vuông tại A ( AB < AC), BD là đường phân giác của góc B (D thuộc AC). Vẽ DE vuông góc BC tại E.                                                                                                           a) Cho biết AB = 3 cm AC = 4 cm .Tính BC                                                                             b) Chứng minh BD là đường trung trực của AE                                                                         c) Chứng minh rằng DA < DC                                                                                                     d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy.

1

a: BC=5cm

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED
Suy ra: DA=DE và BA=BE

=>BD là đường trung trực của AE

c: Ta có: DA=DE

mà DE<DC
nên DA<DC