Cho tam giác vuông tại A biết AB=3 cm, AC=5cm. Tìm BC?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lý Py - ta - go vào \(\Delta ABC\)vuông tại \(A\)
\(BC^2=AB^2+AC^2\)
\(BC^2=3^2+3^2\Rightarrow BC=3\sqrt{2}cm=18\left(cm\right)\)
b) Áp dụng định lý Py - ta - go vào \(\Delta ABC\)vuông tại \(A\)ta có :
\(BC^2+AB^2+AC^2\)
\(BC^2=4^2+6^2\)
\(BC=28\left(cm\right)\)
c) Áp dụng định lý Py - ta - go vào \(\Delta ABC\)vuông tại \(A\), ta có :
\(BC^2=AB^2+AC^2=BC^2=5^2+3^2\Rightarrow BC=25+9=34\left(cm\right)\)
d) Áp dụng định lý Py - ta - go vào \(\Delta ABC\)vuông tại \(A\)ta có :
\(BC^2=AB^2+AC^2=BC^2=5^2+5^2=5\sqrt{2}=50\left(cm\right)\)
d) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=\left(a\sqrt{3}\right)^2+a^2=4a^2\)
hay BC=2a
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{a}{2a}=\dfrac{1}{2}\)
\(\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{a\sqrt{3}}{2a}=\dfrac{\sqrt{3}}{2}\)
\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{a}{a\sqrt{3}}=\dfrac{\sqrt{3}}{3}\)
\(\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)
Ta có : 3^2+4^2=9+16=25
Căn bậc hai của 25 bằng 5 suy ra tam giac ABC vuong tai A
a, Xét hai tam giác AHB và tam giác AHC có:
AC= AB (cân) (gt)
AH là cạnh chung
góc ABH= góc ACH
=> hai tam giác bằng nhau theo trường hợp cạnh huyền góc nhọn
b, ta có tam giác ABC cân
và AH là đường cao => AH cũng là đường trung tuyến của tam giác ABC
c, bạn áp dụng định lí py ta go là ra ngay
\(\Delta ABC\left(\widehat{A}=90^0\right)\)
\(BC^2=AB^2+AC^2\)
\(BC^2=\left(3\sqrt{3}\right)^2+\left(2\sqrt{5}\right)^2=47\)
\(\Rightarrow BC=\sqrt{47}\left(cm\right)\)
\(\sin\widehat{C}=\frac{3\sqrt{3}}{\sqrt{47}}\Rightarrow\widehat{C}\approx55^0\)
\(\widehat{B}=90^0-\widehat{C}\)(2 góc phụ nhau)
\(\widehat{B}=90^0-55^0=35^0\)
Chúc bạn học tốt.
a) Tam giác ABC có AB2+AC2=BC2( 32+42=52)
=> Tam giác ABC vuông tại A
b)Xét tam giác DBA và tam giác DBE có
AB=BE
DBA=DBE ( vì BD là phân giác của góc ABC)
Cạnh BD chung
=> \(\Delta DBA=\Delta DBE\left(c.g.c\right)\)
c) Gọi O là giao điểm của BD và AE
Có tam giác DBA=tam giác DBE ( theo câu b)
=> AD=DE
Ta có AB=BE và AD=DE hay BD là đường trung trực của AE
Vậy \(AE⊥BD\)
d) Xét tam giác DCE vuông và tam giác DFA vuông có
AD=DE
FDA=CDE ( 2 góc đối đỉnh)
=> tam giác DCE= tam giác DFA ( cạnh góc vuông- góc nhọn)
=> DF=DC
=> tam giác DCF cân tại D
Tam giác DEA có DA=DE => Nó cân tại D
Mà CDF=ADE( 2 góc đối đỉnh)
=> FCD+DFC=DAE+DEA
=>2.FCD=2.DAE
=> FCD=DAE
Mà FCD và DAE là 2 góc so le trong
=> AE//CF
a: BC=5cm
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE và BA=BE
=>BD là đường trung trực của AE
c: Ta có: DA=DE
mà DE<DC
nên DA<DC