K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 2 2021

Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)

TH1: \(a;c\) trái dấu 

Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)

Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)

Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.

Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)

\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)

Mà a; c trái dấu nên:

- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)

\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)

\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu

\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)

Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)

3 tháng 12 2018

Đáp án: A

Bước 1 sai  vì giả sử phản chứng sai, phải giả sử phương trình vô nghiệm và a, c trái dấu.

14 tháng 6 2017

*)Xét a và c cùng dương thì:

\(\left(x-2003\right)^2\ge0\)

\(\Rightarrow a\left(x-2003\right)^2\ge0\)

\(\Rightarrow a\left(x-2003\right)^2+c>0\)

*)Xét a và c cùng âm thì:

\(\left(x-2003\right)^2\ge0\)

\(\Rightarrow a\left(x-2003\right)^2\le0\)

\(\Rightarrow a\left(x-2003\right)^2+c< 0\)

11 tháng 5 2017

@...65%,,7788*7.,......................

nói chung a >c

đúng ko

đúng ko

10 tháng 4 2017

\(\left(x-2003\right)^2\ge\) 0 với mọi x

nên ta có hai trường hợp:

TH1: nếu a và c cùng là số âm thì \(a\left(x-2003\right)^2+c\le c< 0\)

\(\Rightarrow\)f(x) vô ngiệm.

TH2: nếu a và c cùng là số dương thì \(a\left(x-2003\right)^2+c\ge c>0\)

\(\Rightarrow\)f(x) vô nghiệm.

vậy nếu a và c cùng dấu thì đa thức f(x) vo nghiệm

10 tháng 4 2017

c đâu

17 tháng 2 2021

yếu quá

28 tháng 4

HasAki nè 

Gọi x1,x2 lần lượt là nghiệm của 2 đa thức f(x) và g(x)

Ta có:\(\hept{\begin{cases}ax_1+b=0\Rightarrow x_1=-\frac{b}{a}\\bx_2+a=0\Rightarrow x_2=-\frac{a}{b}\end{cases}}\)

\(\Rightarrow x_1x_2=-\frac{b}{a}.-\frac{a}{b}=1>0\)

Hay x1,x2 cùng dấu(đpcm)

27 tháng 2 2020

\(P\left(x\right)=ax+b\left(a,b\ne0\right)\)

\(Q\left(x\right)=bx+a\left(a,b\ne0\right)\)

Nghiệm của \(P\left(x\right)\)là số dương 

=>\(ax+b=0=>x=-\frac{b}{a}\)

tương tự , Nghiệm của \(Q\left(x\right)\)là số dương 

=> \(bx+a=0=>x=-\frac{a}{b}\)

=> \(\frac{a}{b}>0,\frac{b}{a}>0\left(dpcm\right)\)