1.
giải phương trình: \(\sqrt{8x+1}+\sqrt{46x-10}=x^3+5x^2+4x+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(PT\Leftrightarrow\sqrt{8x+1}-3+\sqrt{46x-10}-6=-x^3+5x^2+4x+1-3-6\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{8}{\sqrt{8x+1}+3}-5+x^2-4x-3-\frac{10}{\sqrt{46-10x}+6}\right)=0\)
Xét \(\left(\frac{8}{\sqrt{8x+1}+3}-5+x^2-4x-3-\frac{10}{\sqrt{46-10x}+6}\right)\)(*) (đk\(\frac{23}{5}\ge x\ge-\frac{1}{8}\))
(*)\(=\frac{8-5\left(\sqrt{8x+1}+3\right)}{\sqrt{8x+1}+3}+\left(x^2-4x-3\right)-\frac{10}{\sqrt{46-10x}+6}\)
\(=\frac{-7-5\left(\sqrt{8x+1}\right)}{\sqrt{8x+1}+3}+\left(x^2-4x-3\right)-\frac{10}{\sqrt{46-10x}+6}< 0\)
\(\Rightarrow x-1=0\Leftrightarrow x=1\)
Vậy..................
Đề thi thuyển sinh lớp 10 môn Toán Chuyên, TP HCM năm 2012-2013
ĐK \(\frac{-1}{8}\le x\le\frac{23}{5}\)(*) Ta có:
\(\sqrt{8x+1}+\sqrt{46-10x}=-x^3+5x^2+4x+1\)
\(\Leftrightarrow\sqrt{8x+1}-3+\sqrt{46-10x}-6+x^3-x^2-4x^2+4x-8x+8=0\)
\(\Leftrightarrow\frac{8x-1}{\sqrt{8x+1}+3}+\frac{10-10x}{\sqrt{46-10x}+6}+x^2\left(x-1\right)-4x\left(x-1\right)-8\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{8}{\sqrt{8x+1}+3}+\frac{10}{\sqrt{46-10x}+6}+x^2-4x-8\right)=0\)(**)
(*) \(\Rightarrow-1< x< 5\Rightarrow\left(x+1\right)\left(x+5\right)< 0\Rightarrow x^2-4x-5< 0\)
Và \(\frac{8}{\sqrt{8x+1}+3}< \frac{9}{3}=3\Rightarrow\frac{8}{\sqrt{8x+1}+3}-3< 0\) Do vậy:
\(\frac{8}{\sqrt{8x+1}+3}-\frac{10}{\sqrt{46-10x}+6}+x^2-4x-8< 0\)Do đó:
(**)\(\Leftrightarrow x=1\)
Vậy S={1}
1.
ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(\Leftrightarrow3x^2-3x+\left(x+1-\sqrt{3x+1}\right)+\left(x+2-\sqrt{5x+4}\right)=0\)
\(\Leftrightarrow3\left(x^2-x\right)+\dfrac{x^2-x}{x+1+\sqrt{3x+1}}+\dfrac{x^2-x}{x+2+\sqrt{5x+4}}=0\)
\(\Leftrightarrow\left(x^2-x\right)\left(3+\dfrac{1}{x+1+\sqrt{3x+1}}+\dfrac{1}{x+2+\sqrt{5x+4}}\right)=0\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow...\)
2.
Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt[3]{2-8x^3}=b\end{matrix}\right.\)
Ta được hệ:
\(\left\{{}\begin{matrix}\left(2a-1\right)b=a\\a^3+b^3=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2ab\\\left(a+b\right)^3-3ab\left(a+b\right)=2\end{matrix}\right.\)
\(\Rightarrow8\left(ab\right)^3-6\left(ab\right)^2=2\)
\(\Leftrightarrow\left(ab-1\right)\left[4\left(ab\right)^2+ab+1\right]=0\)
\(\Leftrightarrow ab=1\Rightarrow a+b=2\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2\\ab=1\end{matrix}\right.\) \(\Leftrightarrow a=b=1\)
\(\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)
\(a,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=-2\\ \Leftrightarrow-2\sqrt{x-1}=-2\Leftrightarrow\sqrt{x-1}=1\\ \Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\\ b,ĐK:x\ge0\\ PT\Leftrightarrow\dfrac{1}{3}\sqrt{2x}-2\sqrt{2x}+3\sqrt{2x}=12\\ \Leftrightarrow\dfrac{4}{3}\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=9\\ \Leftrightarrow2x=81\Leftrightarrow x=\dfrac{81}{2}\left(tm\right)\)
Thấy : \(x^2-4x+16=\left(x-2\right)^2+12>0\forall x\)
P/t \(\Leftrightarrow2\left(x^2-4x+16\right)-36+\sqrt{x^2-4x+16}=0\)
Đặt \(t=\sqrt{x^2-4x+16}>0\) ; khi đó :
\(2t^2+t-36=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-\dfrac{9}{2}\left(L\right)\end{matrix}\right.\)
Với t = 4 hay \(\sqrt{x^2-4x+16}=4\Leftrightarrow x^2-4x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy ...
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)