K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2023

\(2^{x-2}=8^{100}\)

=>\(2^{x-2}=2^{300}\)

=>x-2=300

=>x=302

11 tháng 4 2021

undefined

11 tháng 4 2021

còn câu c nx bạn ơi, câu đó mình khá khó hiểu, bạn giúp mình vs nha!!! cảm ơn bạn nhiều

 

Không mất tính tổng quát giả sử \(x^2\ge y^2\Leftrightarrow x^2+y^2\ge2y^2\Leftrightarrow2y^2\le100\)

\(\Rightarrow y^2\le50\)

\(\Rightarrow y^2\in\left\{0;1;4;9;16;25;36;49\right\}\)
\(\circledast y^2=0\Leftrightarrow x^2=100\Leftrightarrow x=\pm10\) (chọn)

\(\circledast y^2=1\Leftrightarrow x^2=99\)(loại)

\(\circledast y^2=4\Leftrightarrow x^2=96\)(loại)

\(\circledast y^2=9\Leftrightarrow x^2=91\)(loại)

\(\circledast y^2=16\Leftrightarrow x^2=84\)(loại)

\(\circledast y^2=25\Leftrightarrow x^2=75\)(loại)

\(\circledast y^2=36\Leftrightarrow x^2=64\Leftrightarrow x=\pm8\) (\(y=\pm6\)) (chọn)

\(\circledast y^2=49\Leftrightarrow x^2=51\)(loại)

Vậy các cặp x;y thỏa mãn là: \(\left(x;y\right)\rightarrow\left(0;\pm10\right);\left(8;\pm6\right)\)và hoán vị

17 tháng 4 2016

trời đất
ai tl hộ mình vs

30 tháng 3 2019

Theo điều kiện của bài toán, nghiệm của phương trình (2) bằng một phần ba nghiệm của phương trình (1) nên nghiệm đó bằng 2.

Suy ra, phương trình (3) có nghiệm x = 2

Thay giá trị x = 2 vào phương trình này, ta được (a − 2)2 = a + 3.

Ta coi đây là phương trình mới đối với ẩn a. Giải phương trình mới này: (a − 2)2 = a + 3 ⇔ a = 7

Khi a = 7, dễ thử thấy rằng phương trình (a − 2)x = a + 3 có nghiệm x = 2, nên phương trình (2) cũng có nghiệm x = 2.

25 tháng 3 2016

phá 2 cái giữa ra,,cái đầu cái cuối ra,,rồi đặt x^2+10x+9=b,,,,nhân 2 vế vs 4 rồi....

NV
22 tháng 4 2021

a. Bạn tự giải

b. Để pt có 2 nghiệm trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow m+1< 0\Rightarrow m< -1\)

c. Đề bài có vẻ ko chính xác, sửa lại ngoặc sau thành \(x_2\left(1-2x_1\right)...\)

 \(\Delta'=\left(m+2\right)^2-4\left(m+1\right)=m^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Pt đã cho luôn luôn có nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1\left(1-2x_2\right)+x_2\left(1-2x_1\right)=m^2\)

\(\Leftrightarrow x_1+x_2-4x_1x_2=m^2\)

\(\Leftrightarrow2\left(m+2\right)-4\left(m+1\right)=m^2\)

\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)