K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2023

a) Theo tính chất của 2 tiếp tuyến cắt nhau \(\left\{{}\begin{matrix}AD=BD\\AE=CE\end{matrix}\right.\) 

\(\Rightarrow\dfrac{AD}{AE}=\dfrac{BD}{CE}=\dfrac{ID}{IC}\)

\(\Rightarrow\) AI//CE. 

Mà \(CE\perp BC\) nên \(AI\perp BC\)

Lại có \(AH\perp BC\) \(\Rightarrow\) A, I, H thẳng hàng (đpcm)

b) Theo định lý Thales, ta có \(\dfrac{AI}{CE}=\dfrac{DA}{DE}\) và \(\dfrac{IH}{CE}=\dfrac{BH}{BC}\)

Mặt khác, \(\dfrac{DA}{DE}=\dfrac{BH}{BC}\) (đl Thales trong hình thang)

\(\Rightarrow\dfrac{AI}{CE}=\dfrac{IH}{CE}\) \(\Rightarrow AI=IH\) (đpcm)

c) Ta có \(\dfrac{DB}{DE}=\dfrac{DA}{DE}=\dfrac{AI}{CE}\) \(\Rightarrow DB.CE=DE.AI\) (đpcm)

21 tháng 10 2023

 

 a) và b) Gọi \(P=CA\cap BD,Q=BA\cap CE\)

 Tam giác ABP vuông tại A \(\Rightarrow\widehat{DAP}=90^o-\widehat{DAB}\) và \(\widehat{P}=90^o-\widehat{DBA}\)

 Dễ thấy tam giác DAB cân tại D nên \(\widehat{DAB}=\widehat{DBA}\). Từ đó suy ra \(\widehat{DAP}=\widehat{P}\) hay tam giác DAP cân tại D \(\Rightarrow DA=DB=DP\) hay D là trung điểm BP. Tương tự, ta có E là trung điểm CQ.

 Gọi \(I'=CD\cap AH\). Khi đó áp dụng bổ đề hình thang cho hình thang AHBP, ta có ngay I' là trung điểm AH. Lại áp dụng bổ đề hình thang lần nữa cho hình thang AHCQ, ta thấy B, I, E thẳng hàng (*)

 (*) Bổ đề hình thang phát biểu rằng: Trong 1 hình thang, 2 trung điểm của 2 cạnh đáy, giao điểm 2 đường chéo và giao điểm của 2 đường thẳng chứa 2 cạnh bên của nó thẳng hàng.

 Do đó \(I'\equiv I\), suy ra I, A, H thẳng hàng, đồng thời \(IA=IH\)

 c) Theo Thales: \(\dfrac{DA}{DE}=\dfrac{AI}{EC}\) \(\Rightarrow DE.AI=DA.EC\). Mà \(DA=DB\) (tính chất 2 tiếp tuyến cắt nhau) nên ta có đpcm.

21 tháng 10 2023

Thanks anh/chị Lê Song Phương nhiều ạ, nhờ có chị mà em hiểu rõ hơn về toán lớp 9 r ạ!#

6 tháng 12 2015

Gọi M là trung điểm DE. Khi đó MO là đường TB của hình thang BCED => MO vg với BC 

Mà M là tâm đường tròn đường kính DE => DE là tiếp tuyến ...

25 tháng 10 2021

a) Ta có: \(\left\{{}\begin{matrix}BD=AD\\CE=AE\end{matrix}\right.\)(t/c 2 tiếp tuyến cắt nhau)

\(\Rightarrow BD+CE=AD+AE=ED\)

b) Ta có: \(\left\{{}\begin{matrix}\widehat{AOD}=\widehat{BOD}=\dfrac{1}{2}\widehat{AOB}\\\widehat{AOE}=\widehat{EOC}=\dfrac{1}{2}\widehat{AOC}\end{matrix}\right.\)(t/c 2 tiếp tuyến cắt nhau)

\(\Rightarrow\widehat{DOE}=\widehat{AOD}+\widehat{AOE}=\dfrac{1}{2}\left(\widehat{AOB}+\widehat{AOC}\right)=\dfrac{1}{2}.180^0=90^0\)

(Do \(\widehat{AOB},\widehat{AOC}\) là 2 góc kề bù)

c) Gọi K là trung điểm DE

Ta có: \(DB\perp BC,EC\perp BC\Rightarrow BD//EC\)

\(\Rightarrow BDEC\) là hình thang

Ta có: Tam giác ABC vuông tại A nội tiếp đường tròn (O)

=> O là trung điểm cạnh huyền BC

Xét hthang BDEC có:

O là trung điểm BC(cmt)

K là trung điểm DE(cách vẽ)

=> OK là đường trung bình

\(\Rightarrow\left\{{}\begin{matrix}OK//EC\\OK=\dfrac{1}{2}\left(BD+EC\right)\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}OK=\dfrac{1}{2}DE=DK\\OK\perp BC\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}O\in\left(K\right)\\OK\perp BC\end{matrix}\right.\) => BC là tiếp tuyến đường tròn (K)

 

31 tháng 3 2016
a,DOE=90 b,co: DB= DA; AE= EC(tinh chat hai tiep tuyen cat nhau)suy ra: DA+AE=DB+CE suy ra:DE= BD+ Xet tam giac: ODE vuong tai O co duong cao AO nen suy ra OA^2=DA*AE ma AD=DB,AE=CE nen OA^2=DB*CE suy ra R^2=DB*CE
12 tháng 10 2017

ko co hinh hả bạn