Tìm \(n\in N\)
\(4n-5⋮2n-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4n-5}{2n-1}=\frac{2\left(2n-1\right)-3}{2n-1}=2-\frac{3}{2n-1}\)
Vậy để 4n-5 chia hết cho 2n-1 thì \(2n-1\inƯ\left(3\right)\)
Mà Ư(3)={-1;1;3;-3}
+)2n-1=1 <=> n=1
+)2n-1=-1 <=> n=0
+)2n-1=3 <=> n=2
+)2n-1=-3 <=> n=-1
Vậy n={-1;0;1;2}
\(\frac{4n-5}{2n-1}=\frac{2\left(2n-1\right)}{2n-1}=\frac{2\left(2n-1\right)-3}{2n-1}=\frac{2\left(2n-1\right)}{2n-1}-\frac{3}{2n-1}=2-\frac{3}{2n-1}\in Z\)
\(\Rightarrow3⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(3\right)=\left\{1;3\right\}\left(n\in N\right)\)
\(\Rightarrow2n\in\left\{2;4\right\}\)
\(\Rightarrow n\in\left\{1;2\right\}\)
a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)
\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)
\(A=\dfrac{n+1}{n-3}\)
\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)
\(A=1+\dfrac{4}{n-3}\)
Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3=1 --> n=4
n-3=-1 --> n=2
n-3=2 --> n=5
n-3=-2 --> n=1
n-3=4 --> n=7
n-3=-4 --> n=-1
Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên
b.hemm bt lèm:vv
a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
c: \(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
<=>4n-5=4n-2+7
<=>2.(2n-1)+7
vì 2.(2n-1) chia hết cho 2n-1
Nên 2n-1 thuộc Ư(7)={1;7;-1;-7}
do đó 2n-1=1=>n=1
2n-1=7=>n=8
2n-1=-1=>n=0
2n-1=-7=>n=-3
Vậy n ={1;8;0;-3}
\(\frac{4n-5}{2n-1}=\frac{4n-2}{2n-1}-\frac{3}{2n-1}\)\(=\frac{2\left(2n-1\right)}{2n-1}-\frac{3}{2n-1}\)\(=2-\frac{3}{2n-1}\)
=> \(\frac{3}{2n-1}\in Z=>\)\(3⋮\left(2n-1\right)=>2n-1\inƯ\left(3\right)\)
=> \(2n-1\in\left\{-3;-1;1;3\right\}\)
=>\(2n\in\left\{-2;0;2;4\right\}\)
=> n thuộc { -1;0;1;2}
Ta viết gọn dưới dạng :\(\frac{4n-5}{2n-1}\)
\(=\frac{4n-2-3}{2n-1}\)
\(=\frac{4\left(n-1\right)}{2\left(n-1\right)}-\frac{3}{2n-1}\)
\(=2-\frac{3}{2n-1}\)
\(Để\)\(4n-5⋮2n-1\Rightarrow3⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(3\right)=\left(1;-1;-3;3\right)\)
Ta có bảng sau:
Vì \(n\in N\)
\(\Rightarrow n\in\left(1;2;0\right)\)