Cho B= 1+5+5^2+5^3+...+5^89+5^90. Chứng tỏ rằng B không chia hết cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=5+52+53+...+589+590
A=(5+52+53)+(54+55+56)+...+(588+589+590)
A=5(1+5+52)+54(1+5+52)+...+588(1+5+52)
A=5.31+54.31+...+588.31
Vì A có thừa số 31
Nên => A chia hết cho 31
A = 5 + 52 + 53 + ... + 589 + 590
A = ( 5 + 52 + 53 ) + ... + ( 588 + 589 + 590 )
A = 5( 1 + 5 + 52 ) + ... + 588(1 + 5 + 52 )
A = 5 . 31 + ... + 588 . 31
A = 31( 5 + ... + 588 ) chia hết cho 31
=> A chia hết cho 31
Câu 1:
$A=(1+5+5^2)+(5^3+5^4+5^5)+...+(5^{2016}+5^{2017}+5^{2018})$
$=(1+5+5^2)+5^3(1+5+5^2)+....+5^{2016}(1+5+5^2)$
$=(1+5+5^2)(1+5^3+...+5^{2016})$
$=31(1+5^3+...+5^{2016})\vdots 31$ (đpcm)
Câu 2:
$2x+7\vdots 2x-2$
$\Rightarrow (2x-2)+9\vdots 2x-2$
$\Rightarrow 9\vdots 2x-2$
$\Rightarrow 2x-2$ là ước của $9$
Mà $2x-2$ là số chẵn với mọi $x$ nguyên, còn $Ư(9)\in \left\{\pm 1; \pm 3; \pm 9\right\}$ (không có ước nào chẵn)
$\Rightarrow$ không tồn tại $x$ nguyên thỏa mãn yêu cầu đề bài.
\(B=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+\left(5^6+5^7+5^8\right)\\ B=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+5^6\left(1+5+5^2\right)\\ B=\left(1+5+5^2\right)\left(1+5^3+5^6\right)=31\left(1+5^3+5^6\right)⋮31\)
\(B=\left(1+5+5^2\right)+...+5^6\left(1+5+5^2\right)\)
\(=31\left(1+...+5^6\right)⋮31\)
a) A=5(1+5)+53(1+5)+...+5199(1+5)
=(1+5)(5+53+....+5199) chia hết cho 6
b) A:31 dư 30 hay A-30 chia hết cho 31
Ta có A=5(1+5+52)+54(1+5+52)+57(1+5+52)+.....+598(1+5+52)
31(5+54+57+...+599) chia hết cho 31. Nên A chia cho 31 không dư
a, ta thấy 2n+1;2n+2;2n+3 là 3 số tự nhiên liên tiếp
Mà trong 3 stn liên tiếp luôn có 1 số chia hết cho 3.
Vậy 2n+1;2n+2;2n+3 chia hết cho 3
b, 5+52+ ...+512
=(5+52+53)+...+(510+511+512)( 3 số hạng 1 ngoặc)
=(5.1+5.5+5.25)+...+(510.1+510.5+510.25)
=5.(1+5+25)+...+510.(1+5+25)
=5.31+...+510.31
=31.(5+...+531)
Vì 31 chia hết cho 31 =>31.(5+...+510) chia hết cho 31
Vâỵ 5+52+ ...+512 chia hết cho 31
Lời giải:
$B=1+(5+5^2+5^3)+(5^4+5^5+5^6)+....+(5^{88}+5^{89}+5^{90})$
$=1+5(1+5+5^2)+5^4(1+5+5^2)+....+5^{88}(1+5+5^2)$
$=1+(1+5+5^2)(5+5^4+....+5^{88})$
$=1+31(5+5^4+...+5^{88})\not\vdots 31$
Ta có đpcm.