cho góc xOy nhọn A là điểm bất kì nằm trong phân giác của góc xOy qua A kẻ đường thẳng cắt Ox tại E, Oy tại F. chứng minh rằng \(\frac{1}{OE}+\frac{1}{OF}\) không đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác AHO và tam giác BKO, có:
\(\widehat{BKO}=\widehat{AHO}=90^0\)
\(\widehat{O}:chung\)
Vậy tam giác AHO đồng dạng tam giác BKO ( g.g )
b.Xét tam giác EAK và tam giác EBH, có:
\(\widehat{AEK}=\widehat{BEH}\) ( đối đỉnh )
\(\widehat{AKE}=\widehat{BHE}=90^0\)
Vậy tam giác EAK đồng dạng tam giác EBH ( g.g )
\(\Rightarrow\dfrac{EK}{EH}=\dfrac{EA}{EB}\)
\(\Rightarrow EK.EB=EA.EH\)
c.Áp dụng định lý pitago vào tam giác vuông OAH, có:
\(OA^2=OH^2+AH^2\)
\(\Rightarrow AH=\sqrt{OA^2-OH^2}=\sqrt{5^2-3^2}=\sqrt{16}=4cm\)
Ta có: tam giác AHO đồng dạng tam giác BKO
\(\Rightarrow\dfrac{OA}{OB}=\dfrac{AH}{BK}\)
\(\Leftrightarrow\dfrac{5}{4}=\dfrac{4}{BK}\)
\(\Leftrightarrow5BK=16\)
\(\Leftrightarrow BK=\dfrac{16}{5}cm\)
Đề bài sai ngay từ câu a, hai tam giác này đồng dạng chứ ko bằng nhau (chúng chỉ bằng nhau khi E nằm trên tia phân giác trong góc xOy)
a) Xét 2 tam giác vuông OAC và tam giác OBD có:
OA = OB (gt)
O là góc chung
suy ra tam giác OAC = tam giác OBD (cạnh góc vuông - góc nhọn kề cạnh ấy)
b) Ta có : OD = OA + AD
OC = OB + BC
mà OD = OC (vì tam giác OAC = tam giác OBD)
OA = OB ( gt)
suy ra AD = BC
Xét 2 tam giác vuông ADI và tam giác BCI có:
AD = BC (cmt)
góc D = góc C (vì tam giác OAC = tam giác OBD)
suy ra tam giác ADI và tam giác BCI (cạnh goác vuông - góc nhọn kề cạnh ấy)
suy ra IA = IB (2 cạnh tương ứng)
c)Xét 2 tam giác vuông OAI và tam giác OBI có:
OI là cạnh chung
OA = OB (gt)
suy ra tam giác OAI = tam giác OBI (2 cạnh góc vuông)
suy ra góc O1 = góc O2 (2 góc tương ứng)
suy ra OI là tia phân giác của góc xOy
Cái chỗ A1, A2, B1, B2 bạn đừng kí hiệu vào bài làm nhé!
Mình nhầm tí!
Xét tứ giác BMOA:
+ BM // OA (b // Oy).
+ AM // OB (a // Ox).
\(\Rightarrow\) Tứ giác BMOA là hình bình hành (dhnb).
\(\Rightarrow\widehat{AMB}=\widehat{BOA}\) (Tính chất hình bình hành).
hay \(\Rightarrow\widehat{AMB}=\widehat{xOy.}\)
Có: \(S_{OEF}=S_{AOE}+S_{AOF}\)
\(\Leftrightarrow\frac{1}{2}.\sin\widehat{O}.OE.OF=\frac{1}{2}.\sin\frac{\widehat{O}}{2}.OA.\left(OE+OF\right)\)
\(\Leftrightarrow\sin\widehat{O}.OE.OF=\sin\frac{\widehat{O}}{2}.OA.\left(OE+OF\right)\)
\(\Leftrightarrow\frac{OE+OF}{OE.OF}=\frac{\sin\widehat{O}}{\sin\frac{\widehat{O}}{2}}\)
\(\Leftrightarrow\frac{1}{OE}+\frac{1}{OF}=\frac{\sin\widehat{O}}{\sin\frac{\widehat{O}}{2}}\)
Ta có số đo góc xOy không đổi nên \(\frac{\sin\widehat{O}}{\sin\frac{\widehat{O}}{2}}\)không đổi \(\Rightarrow\frac{1}{OE}+\frac{1}{OF}\)không đổi (đpcm)