K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 11 2023

Oc là tia nào vậy bạn?

22 tháng 11 2021

Vẽ Hình Cho Em Nx Ạ 
 

 

6 tháng 1 2019

a) \(\Delta AKO\)và \(\Delta BKO\)có:

          OA = OB (theo GT)

          \(\widehat{AOK}=\widehat{BOK}\)(Vì OK là tia phân giác của \(\widehat{xOy}\))

         OK: cạnh chung

    Do đó: \(\Delta AKO=\Delta BKO\)(c.g.c)

   Suy ra: AK = KB (cặp cạnh tương ứng)

b) Ta có: \(\widehat{AKO}+\widehat{BKO}=180^o\)(vì là hai góc kề bù)

            Mà \(\widehat{AKO}=\widehat{BKO}\)(do \(\Delta AKO=\Delta BKO\))

   Do đó: \(\widehat{AKO}=\frac{180^o}{2}=90^o\)

  Suy ra: \(OK\perp AB\)

c) \(\Delta HOK\)và \(\Delta IOK\)có:

        \(\widehat{KHO}=\widehat{KIO}=90^o\)(do ​\(KH\perp Ox,KI\perp Oy\))

        OK: cạnh chung

       ​\(\widehat{AOK}=\widehat{BOK}\)(Vì OK là tia phân giác của \(\widehat{xOy}\))

     Do đó: \(\Delta HOK=\Delta IOK\)(cạnh huyền, góc nhọn)

    Suy ra \(\widehat{HKO}=\widehat{IKO}\)(cặp góc tương úng)

     Mà tia KO nằm giữa hai tia KH và KI

    Nên KO là tia phân giác của \(\widehat{HKI}\)

        

 

a: ΔOAB cân tại O

mà OK là đường phân giác

nên K là trung điểm của AB

=>KA=KB

b: ΔOAB cân tại O

mà OK là đường trung tuyến

nên OK vuông góc AB

a: ΔOAB cân tại O

mà OK là phân giác

nên K là trung điểm của AB

=>KA=KB

b: ΔOAB cân tại O

mà OK là phân giác

nên OK vuông góc AB

16 tháng 10 2016

Xét tam giác AOC và tam giác BOC có:

AO = BO (gt)

AOC = BOC (OC là tia phân giác của AOB)

OC là cạnh chung

=> Tam giác AOC = Tam giác BOC (c.g.c)

OA = OB (gt)

=> Tam giác OAB cân tại O

mà OI là tia phân giác của AOB

=> OI là đường trung trực của tam giác OAB

=> I là trung điểm của AB

     OI _I_ AB

16 tháng 10 2016

Ta có hình vẽ:

x O y z A B C I

Vì Oz là phân giác của xOy nên \(xOz=zOy=\frac{xOy}{2}\)

Xét Δ AOC và Δ BOC có:

OA = OB (gt)

góc AOC = góc BOC (chứng minh trên)

OC là cạnh chung

Do đó, Δ AOC = Δ BOC (c.g.c) (đpcm)

Vì Δ AOC = Δ BOC nên AC = BC (2 cạnh tương ứng)

góc ACO = góc BCO (2 góc tương ứng)

Xét Δ AIC và Δ BIC có:

AC = BC (chứng minh trên)

góc ACI = BCI (chứng minh trên)

CI là cạnh chung

Do đó, Δ AIC = Δ BIC (c.g.c)

=> AI = IB (2 cạnh tương ứng)

=> I là trung điểm của đoạn AB (đpcm)

Vì Δ AIC = Δ BIC nên góc AIC = BIC (2 góc tương ứng)

Lại có: AIC + BIC = 180o (kề bù)

Do đó, góc AIC = góc BIC = 90o

=> \(AB\perp OC\left(đpcm\right)\)