Tìm x, y biết:
\(\frac{x}{2}\) = \(\frac{y}{3}\)và x . y = 6
Có ai làm được ko nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng BĐT AM-GM ta có:
\(x+y\ge2\sqrt{xy}\)
\(\Rightarrow\)\(\frac{x+y}{2}\ge\sqrt{xy}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
b) Áp dụng BĐT AM-GM ta có:
\(\frac{\sqrt{x}}{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{x}}\ge2\sqrt{\frac{\sqrt{x}}{\sqrt{y}}.\frac{\sqrt{y}}{\sqrt{x}}}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
<=> 3( 2x - y ) = 2 ( x + 2y )
<=> 6x - 3y = 2x + 4y
<=> 6x - 2x = 4y + 3y
<=> 4x = 7y
=> \(\frac{x}{y}=\frac{7}{4}\)
Ta có: x/4=y/3=z/5
=x^2/16=y^2/9=z^2/25
=x^2+y^2+z^2/16+9+25
=200/50
=4
Từ x^2/16=4
=x^2=4.16=64
=x^2=8^2
=x=8
y^2/9=4
=y^2=4.9=36
=y^2=6^2
=y=6
z^2/25=4
=z^2=4.25=100
=z^2=10^2
=z=10
Vậy x=8,y=6,z=10
P/s:Bạn thông cảm,máy nhà mình ko có dấu suy ra.
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{5};x^2+y^2+z^2=200\)
<=>\(\frac{x^2}{4^2}=\frac{y^2}{3^2}=\frac{z^2}{5^2}\)
<=>\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{25}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2+z^2}{16+9+25}\)\(=\)\(\frac{200}{50}=4\)
=>\(\hept{\begin{cases}\frac{x}{4}=4\\\frac{y}{3}=4\\\frac{z}{5}=4\end{cases}=>}\hept{\begin{cases}x=16\\y=12\\z=20\end{cases}}\)
vậy\(\hept{\begin{cases}x=16\\y=12\\z=20\end{cases}}\)
Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)
\(\Leftrightarrow2016x+2016y=2014x-2014y\)
\(\Leftrightarrow2x=-4030y\)
\(\Leftrightarrow x=-2015y\)
Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:
\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)
\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)
\(\Leftrightarrow-y=-y^2\)
\(\Leftrightarrow y-y^2=0\)
\(\Leftrightarrow y\left(1-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Trường hợp \(y=0\):
\(y=0\Rightarrow x.y=-2015.0=0\)
Trường hợp \(y=1\):
\(y=1\Rightarrow x.y=-2015.1=-2015\)
Ta có:
\(\frac{x}{2}=\frac{y}{3}\) và \(xy=6\)
\(\Rightarrow x=2k;y=3k\) và \(xy=6\)
\(\Rightarrow2k.3k=6\Leftrightarrow6k^2=6\Leftrightarrow k=\hept{\begin{cases}1\\-1\end{cases}}\)
\(\Rightarrow x=2.1=2;x=2.-1=-2\)
\(\Rightarrow y=3.1=3;y=3.-1=-3\)
Vậy \(x\in\left\{2;-2\right\};y\in\left\{3;-3\right\}\)