4. Cho ABC có AB = AC. Kẻ AE là phân giác của góc BAC (E thuộc BC). Chứng minh rằng:
a. ABE = ACE
b. AE là đường trung trực của đoạn thẳng BC.
(mong các bạn giúp mình giải bài này)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE và ΔACE có
AB=AC
\(\widehat{BAE}=\widehat{CAE}\)
AE chung
Do đó: ΔABE=ΔACE
b: ta có: ΔABC cân tại A
mà AE là tia phân giác của góc BAC
nên AE là đường trung trực của BC
Xét tg ABE và tg ACE có:
AB = AC (gt).
Góc BAE = Góc CAE (AE là phân giác của góc BAC).
AE chung.
=> tg ABE = tg ACE (c - g - c).
b) Xét tg ABC có: AB = AC (gt)
Tg ABC cân tại A.
Xét tg ABC cân tại A có:
AE là phân giác của góc BAC (gt).
=> AE đường trung trực của đoạn thẳng BC (tính chất các đường trong tg cân).
a/ Xét tam giác ABC có: AB = AC (gt) => Tam giác ABC cân tại A
Xét tam giác ABE và tam giác ACE:
^B = ^C (tam giác ABC cân tại A)
^BAE = ^CAE (AE là tia phân giác của góc BAC)
AB = AC (tam giác ABC cân tại A)
=> Tam giác ABE = Tam giác ACE (g c g)
b/ Xét tam giác ABC cân tại A: AE là tia phân giác của góc BAC (gt)
=> AE là đường trung trực của đoạn thẳng BC (TC các đường trong tam giác cân)
A, xet ^ ABE va ^ AEC co :
AE chung
Goc BAE= goc EAC (vi AE la phan giac )
AB = AC ( do ^ ABC can tai A )
=>^ABE=^AEC(c.g.c)
=>BE=EC(2 canh tuong ung )
B,ta co AE la tia phan giac cua goc BAC
Ma ^ABC can tai A
=>AE vuong goc voi BC
Lai co BE = EC (cmt )
=> AE la duong trung truc cua BC
có AB=AC suy ra tam giác ABC cân
mà AE là phân giác góc BAC suy ra AE là đg cao (tính chất)và cũng suy ra b)AE là đg trung trực của BC
xét 2 tam giác vuông ABE và ACE co\(\hept{\begin{cases}AB=AC\\AElàcanhchung\end{cases}}\)
suy ra 2 tam giác bằng nhau
Xét ΔABC có AB=AC
nên ΔABC cân tại A
hay \(\widehat{ABE}=\widehat{ACE}\)
Ta có: ΔABC cân tại A
mà AE là đường phân giác
nên AE là đường cao