cho phương trình (2m-1 )/(x-1)= 2-m (m là tham số) . tìm giá trị vủa m để phương trình có nghiệm lớn hơn -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) điều kiện của m: m khác 5/2
thế x=2 vào pt1 ta đc:
(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)
lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2
vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2
3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m
Để phương trình (1) có hai nghiệm trái dấu thì \(1\left(m^2+2m\right)< 0\)
\(\Leftrightarrow m^2+2m< 0\)
\(\Leftrightarrow m^2+2m+1< 1\)
\(\Leftrightarrow\left(m+1\right)^2< 1\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+1>-1\\m+1< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m< 0\end{matrix}\right.\Leftrightarrow-2< m< 0\)
Pt đã cho có 2 nghiệm pb khi và chỉ khi:
\(\Delta'=\left(m+1\right)^2-\left(-2m-1\right)>0\)
\(\Leftrightarrow m^2+4m+2>0\)
\(\Rightarrow\left[{}\begin{matrix}m>-2+\sqrt{2}\\m< -2-\sqrt{2}\end{matrix}\right.\)
Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=(m-1)^2+2m+1=m^2+2\geq 0$
$\Leftrightarrow m\in\mathbb{R}$
Áp dụng định lý Viet:
$x_1+x_2=2(m-1)$
$x_1x_2=-2m-1$
Khi đó:
$2x_1+3x_2+3x_1x_2=-11$
$\Leftrightarrow 2(x_1+x_2)+3x_1x_2+x_2=-11$
$\Leftrightarrow 4(m-1)+3(-2m-1)+x_2=-11$
$\Leftrightarrow x_2=2m-4$
$x_1=2(m-1)-x_2=2m-2-(2m-4)=2$
$-2m-1=x_1x_2=2(2m-4)$
$\Leftrightarrow -2m-1=4m-8$
$\Leftrightarrow 7=6m$
$\Leftrightarrow m=\frac{7}{6}$
Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=(m-1)^2+2m+1=m^2+2\geq 0$
$\Leftrightarrow m\in\mathbb{R}$
Áp dụng định lý Viet:
$x_1+x_2=2(m-1)$
$x_1x_2=-2m-1$
Khi đó:
$2x_1+3x_2+3x_1x_2=-11$
$\Leftrightarrow 2(x_1+x_2)+3x_1x_2+x_2=-11$
$\Leftrightarrow 4(m-1)+3(-2m-1)+x_2=-11$
$\Leftrightarrow x_2=2m-4$
$x_1=2(m-1)-x_2=2m-2-(2m-4)=2$
$-2m-1=x_1x_2=2(2m-4)$
$\Leftrightarrow -2m-1=4m-8$
$\Leftrightarrow 7=6m$
$\Leftrightarrow m=\frac{7}{6}$
Thay x=2 vào pt ta có:
\(\left(m^2+2m+3\right)x-6=0\\ \Leftrightarrow2\left(m^2+2m+3\right)-6=0\\ \Leftrightarrow2m^2+4m+6-6=0\\ \Leftrightarrow2m+4m=0\\ \Leftrightarrow2m\left(m+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)
Vậy ...
a) m2+1\(\ge\)1 \(\forall\)m, suy ra phương trình đã cho là phương trình bậc nhất một ẩn với mọi m.
b) Nghiệm của phương trình đã cho là x=\(\dfrac{2m}{m^2+1}\) (*).
Áp dụng BĐT Co-si cho hai số dương m2 và 1, ta có:
m2+1\(\ge\)2\(\sqrt{m^2.1}\)=2|m|.
Dấu "=" xảy ra khi và chỉ khi m2=1 \(\Rightarrow\) m=\(\pm\)1.
Với m=1, x=1.
Với m=-1, x=-1.
So sánh hai giá trị của x, ta kết luận: giá trị m cần tìm là m=1.