K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

abc = 321 nhé

8 tháng 8 2017

thanks

19 tháng 12 2016

axbxc=a+b+c=321

số cần tìm là 321

24 tháng 12 2016

verygood

21 tháng 9 2017

a+3b=8 (1) suy ra 3b bé thua hoặc bằng 8

suy ra b bé thua hoặc bằng 2

suy ra b có thể bằng 0,1,2

lần lượt thay b vào (1) ta đc a thứ tự bằng 8,5,2

thay lần lượt b vào a+2c=9 . suy ra 2c lần lượt = 1,4,7 suy ra c = 1/2,2,3/5

vậy các cặp ( a,b,c) thỏa mãn là (8,0,1/2),(5,1,2),(2,2,3/5)

mà a+b+c lớn nhất . suy ra a,b,c=8,0,1/2 ( do 8+0+1/2 lớn nhất trong các cặp a b c thỏa mãn )

31 tháng 1 2018

BÀI 2:

\(\left|x\right|=11\)\(\Rightarrow\)\(x=\pm11\)

\(\left|y+1\right|=15\)\(\Rightarrow\)\(\orbr{\begin{cases}y+1=15\\y+1=-15\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}y=-14\\y=-16\end{cases}}\)

19 tháng 7 2016

\(A=x^2-6x+11=x^2-2.x.3+3^2+2\)

\(A=\left(x-3\right)^2+2\)

\(\left(x-3\right)^2\ge0\)với mọi \(x\in R\)

nên \(\left(x-3\right)^2+2\ge2\)với mọi x\(x\in R\)

Vậy \(Min_A=2\)khi đó \(x=3\)

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .Bài 4 : Cho các...
Đọc tiếp

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :

\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .

Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :

\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .

Bài 4 : Cho các số dương a,b,c . Chứng minh :

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1

Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)

Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

 

6
3 tháng 11 2019

neu de bai bai 1 la tinh x+y thi mik lam cho

4 tháng 11 2019

đăng từng này thì ai làm cho 

30 tháng 6 2016

a)Ta thấy:

\(\left|x\right|\ge0\)

\(\Rightarrow\left|x\right|+10\ge0+10=10\)

\(\Rightarrow A\ge10\).Dấu "=" <=>x=0

Vậy Amin=10 <=>x=0

b,c phân tích ra làm tương tự