Cho hàm số y = f(x) = (4m² - 4m + 1)x - 3 a) Tìm điều kiện của m để hàm số đã cho là hàm số bậc nhất. b)Tìm m biết f(1) = 6 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để hàm số \(y = (1 - 3m){x^2} + 3\) là hàm số bậc hai thì: \(1 - 3m \ne 0\) tức là \(m \ne \frac{1}{3}\)
Vậy \(m \ne \frac{1}{3}\) thì hàm số đã cho là hàm số bậc hai.
b) Để hàm số \(y = (4m - 1){(x - 7)^2}\) là hàm số bậc hai thì: \(4m - 1 \ne 0\) tức là \(m \ne \frac{1}{4}\)
Vậy \(m \ne \frac{1}{4}\) thì hàm số đã cho là hàm số bậc hai.
c) Để hàm số \(y = 2({x^2} + 1) + 11 - m\) là hàm số bậc hai thì: \(2 \ne 0\) và \(m \in \mathbb R\)
Vậy \(m \in \mathbb R\) thì hàm số đã cho là hàm số bậc hai.
Đáp án A
Hàm số bậc nhất là hàm số có dạng: y = ax + b (a ≠ 0)
Để hàm số đã cho là hàm số bậc nhất thì:
2m - 4 ≠ 0 ⇒ 2m ≠ 4 ⇒ m ≠ 2
a) hàm số bậc nhất -2m-4\(\ne\)0<=>m\(\ne-2\)
b)hàm số nghịch biến\(-2m-4< 0\Leftrightarrow m>-2\)
\(a,f\left(x\right)=\left(-2m-4\right)x+1\) bậc nhất \(\Leftrightarrow-2m-4\ne0\Leftrightarrow m\ne-2\)
\(b,f\left(x\right)=\left(-2m-4\right)x+1\) nghịch biến \(\Leftrightarrow-2m-4< 0\Leftrightarrow-2m< 4\Leftrightarrow m>-2\)
Bài 1:
a: Để (d) là hàm số bậc nhất thì 2m-2<>0
hay m<>1
b: Để (d) là hàm số đồng biến thì 2m-2>0
hay m>1
c: Hàm số (d') đồng biến vì a=4>0
Bài 2:
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}-x+6=3x-6\\y=-x+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3\end{matrix}\right.\)
a.
Hàm là hàm số bậc nhất khi:
\(2m-1\ne0\Leftrightarrow m\ne\dfrac{1}{2}\)
b.
Hàm đồng biến trên R khi:
\(2m-1>0\Leftrightarrow m>\dfrac{1}{2}\)
a) Để hàm số là hàm số bậc nhất thì \(2m-1\ne0\)
hay \(m\ne\dfrac{1}{2}\)
b) Để hàm số đồng biến thì 2m-1>0
hay \(m>\dfrac{1}{2}\)
a: Để hàm số đồng biến thì -3/(4m-5)>0
=>4m-5<0
=>m<5/4
b: Để hàm số nghịch biến thì -3/(4m-5)<0
=>4m-5>0
=>m>5/4
a) Hàm số: \(y=\sqrt{\dfrac{-1}{4m-2}}x+\dfrac{1}{7}\)
Là hàm số bậc nhất khi:
\(\dfrac{-1}{4m-2}>0\)
\(\Leftrightarrow4m-2< 0\)
\(\Leftrightarrow4m< 2\)
\(\Leftrightarrow m< \dfrac{4}{2}\)
\(\Leftrightarrow m< \dfrac{1}{2}\)
b) Ta có:
\(\sqrt{\dfrac{-1}{4m-2}}>0\forall m\ge\dfrac{1}{2}\)
Nên hệ số góc dương nên đây là hàm số bậc nhất đồng biến
a: Để hàm số đồng biến thì m-3>0
hay m>3
b: Thay x=-1 và y=1 vào (d), ta được:
-m+3+m-2=1
hay 1=1(đúng)
Lời giải:
a. Để hs trên là hàm bậc nhất thì:
$4m2-4m+1\neq 0$
$\Leftrightarrow (2m-1)^2\neq 0$
$\Leftrightarrow 2m-1\neq 0$
$\Leftrightarrow m\neq \frac{1}{2}$
b.
$f(1)=(4m^2-4m+1).1-3=4m^2-4m-2=6$
$\Leftrightarrow 4m^2-4m-8=0$
$\Leftrightarrow m^2-m-2=0$
$\Leftrightarrow (m+1)(m-2)=0$
$\Leftrightarrow m=-1$ hoặc $m=2$