Cho dãy số (Un) xác định bởi \(U_n=\dfrac{an^2-1}{n^2+3}\) với \(n\ge1\). Tập hợp các giá trị của a để dãy số (Un) tăng là?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = n^2 - 1:
u1 = 1^2 - 1 = 0 u2 = 2^2 - 1 = 3 u3 = 3^2 - 1 = 8 u4 = 4^2 - 1 = 15
Vậy u1 = 0, u2 = 3, u3 = 8, u4 = 15.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 99, ta giải phương trình n^2 - 1 = 99:
n^2 - 1 = 99 n^2 = 100 n = 10 hoặc n = -10
Vì số hạng của dãy phải là số tự nhiên nên ta chọn n = 10. Vậy số hạng thứ mấy có giá trị 99 là u10.
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = (2n - 1)/(n + 1):u1 = (21 - 1)/(1 + 1) = 1/2 u2 = (22 - 1)/(2 + 1) = 3/3 = 1 u3 = (23 - 1)/(3 + 1) = 5/4 u4 = (24 - 1)/(4 + 1) = 7/5
Vậy u1 = 1/2, u2 = 1, u3 = 5/4, u4 = 7/5.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 137137, ta giải phương trình (2n - 1)/(n + 1) = 137137:
(2n - 1)/(n + 1) = 137137 2n - 1 = 137137(n + 1) 2n - 1 = 137137n + 137137 137135n = 137138 n = 1
Vậy số hạng thứ mấy có giá trị 137137 là u1.
Để \(u_n\) nguyên thì \(n^2+3n+7⋮n+1\)
=>\(n^2+n+2n+2+5⋮n+1\)
=>\(5⋮n+1\)
=>\(n+1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{0;-2;4;-6\right\}\)
Vậy: \(u_n\) có 4 số hạng nhận giá trị nguyên
Đặt \(u_n=v_n+1\Rightarrow v_{n+1}+1=\dfrac{2017+v_n+1}{2019-\left(v_n+1\right)}=\dfrac{2018+v_n}{2018-v_n}\)
\(\Rightarrow v_{n+1}=\dfrac{2018+v_n}{2018-v_n}-1=\dfrac{2v_n}{2018-v_n}\Rightarrow\dfrac{1}{v_{n+1}}=1009\dfrac{1}{v_n}-\dfrac{1}{2}\)
Đặt \(\dfrac{1}{v_n}=x_n\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{1}{v_1}=\dfrac{1}{u_1-1}=1\\x_{n+1}=1009x_n-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow x_{n+1}-\dfrac{1}{2016}=1009\left(x_n-\dfrac{1}{2016}\right)\)
\(\Rightarrow x_n-\dfrac{1}{2016}\) là CSN với công bội 1009 \(\Rightarrow x_n-\dfrac{1}{2016}=\dfrac{2015}{2016}.1009^{n-1}\)
\(\Rightarrow x_n=\dfrac{2015}{2016}1009^{n-1}+\dfrac{1}{2016}\)
\(\Rightarrow u_n=v_n+1=\dfrac{1}{x_n}+1=\dfrac{2016}{2015.1009^{n-1}+1}+1\)
\(\Rightarrow\lim\left(u_n\right)=1\)
Có thể đặt \(u_n=v_n+2017\) nữa bác nhỉ, bác có công thức tổng quát tìm t không ạ: \(u_n=v_n+t\).
\(u_2=\sqrt{2}\left(2+3\right)-3=5\sqrt{2}-3\)
\(u_3=\sqrt{\dfrac{3}{2}}.5\sqrt{2}-3=5\sqrt{3}-3\)
\(u_4=\sqrt{\dfrac{4}{3}}.5\sqrt{3}-3=5\sqrt{4}-3\)
....
\(\Rightarrow u_n=5\sqrt{n}-3\)
\(\Rightarrow\lim\limits\dfrac{u_n}{\sqrt{n}}=\lim\limits\dfrac{5\sqrt{n}-3}{\sqrt{n}}=5\)
\(U_n=\dfrac{an^2-1}{n^2+3}\)
\(=\dfrac{an^2+3a-3a-1}{n^2+3}\)
\(=a+\dfrac{-3a-1}{n^2+3}\)
Để dãy này là dãy tăng thì \(U_{n+1}>U_n\)
=>\(a+\dfrac{-3a-1}{\left(n+1\right)^2+3}>a+\dfrac{-3a-1}{n^2+3}\)
=>\(\dfrac{-3a-1}{\left(n+1\right)^2+3}>\dfrac{-3a-1}{n^2+3}\)
=>\(\dfrac{3a+1}{\left(n+1\right)^2+3}< \dfrac{3a+1}{n^2+3}\)(1)
TH1: 3a+1>0
=>a>-1/3
(1)=>\(\dfrac{1}{\left(n+1\right)^2+3}< \dfrac{1}{n^2+3}\)
=>\(\left(n+1\right)^2+3>n^2+3\)
=>\(\left(n+1\right)^2>n^2\)
=>\(n^2+2n+1-n^2>0\)
=>\(2n+1>0\)(luôn đúng với mọi n>=1)
TH2: 3a+1<0
=>a<-1/3
(2) trở thành \(\dfrac{1}{\left(n+1\right)^2+3}>\dfrac{1}{n^2+3}\)
=>\(\left(n+1\right)^2+3< n^2+3\)
=>\(n^2+2n+1-n^2< 0\)
=>2n+1<0
=>2n<-1
=>\(n< -\dfrac{1}{2}\)(loại)
Vậy: \(a>-\dfrac{1}{3}\)