giải bất phương trình sau : I x-1 I +I x-5 I > 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(4x+8=3x-1\)
\(\Leftrightarrow4x-3x=-1-8\)
\(\Leftrightarrow x=-9\)
2) Ta có: \(10-5\left(x+3\right)>3\left(x-1\right)\)
\(\Leftrightarrow10-5x-15-3x+3>0\)
\(\Leftrightarrow-8x>2\)
hay \(x< \dfrac{-1}{4}\)
Bài 1: Giaỉ các pt:
a) \(3x-15=0\\ < =>3x=15\\ =>x=\dfrac{15}{3}=5\)
Vậy: tập nghiệm của phương trình là S= {5}
b) \(\left(x-3\right)\left(2x+4\right)=0\\ < =>\left[{}\begin{matrix}x-3=0\\2x+4=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy: tập nghiệm của phương trình là S= {-2;3}
Bài 2:
Vì \(3a-5< 3b-5\\ =>3a-5+5< 3b-5+5\) (cộng 5 vào 2 vế)
\(< =>3a< 3b\\ =>3a.\dfrac{1}{3}< 3b.\dfrac{1}{3}\) (nhân 1/3 vào 2 vế)
\(< =>a< b\)
Bài 3: Giaỉ pt:
\(\dfrac{1}{x+1}-\dfrac{5}{x-2}=\dfrac{15}{\left(x+1\right)\left(x-2\right)}\\ \left(ĐKXĐ:\left[{}\begin{matrix}x+1\ne0< =>x\ne-1\\x-2\ne0< =>x\ne2\end{matrix}\right.\right)\)
\(< =>\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}-\dfrac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{15}{\left(x+1\right)\left(x-2\right)}\\ < =>x-2-5x-5=15\\ < =>-5x+x=15+5+2\\ < =>-4x=22\\ =>x=\dfrac{22}{-4}=-\dfrac{11}{2}\left(TMĐK\right)\)
Vậy: tập nghiệm của phương trình là S= \(\left\{-\dfrac{11}{2}\right\}\)
Bài 4: Giaỉ bpt - biểu diễn trục số
\(4x+3\ge7\\ < =>4x\ge4\\ < =>x\ge\dfrac{4}{4}\\ < =>x\ge1\)
Vậy: tập nghiệm của bất phương trình là S= \(\left\{x|x\ge1\right\}\)
Biểu diễn trục số:
0 1
Bài 1 :
a ) 3x - 15 = 0
\(\Leftrightarrow\) 3x = 15
\(\Leftrightarrow\) x = 5
Vậy phương trình có nghiệm x = 5 .
b ) \(\left(x-3\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\2x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy phương trình có nghiệm x = 3 hoặc x = -2
3\(\left(x-\frac{1}{6}\right)^2+\frac{11}{12}>0\left(dung\right)\)Vay x thuoc R
\(-x^2+5x-4\le0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)\ge0\Rightarrow\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)
\(x^2+5x+4>0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)>0\Rightarrow\left[{}\begin{matrix}x>-1\\x< -4\end{matrix}\right.\)
a/ Để BPT nghiệm đúng với mọi x:
\(\left\{{}\begin{matrix}a=m-1>0\\\Delta'=\left(m-1\right)^2+\left(m-1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\left(m-1\right)\le0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m>1\\0\le m\le1\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
b/ Để BPT vô nghiệm
\(\Leftrightarrow\left(m-4\right)x^2-5\left(m-4\right)x-2\left(m-4\right)\le0\) nghiệm đúng \(\forall x\)
- Với \(m=4\) BPT trở thành \(0\le0\) (đúng)
- Với \(m\ne4\):
Hệ điều kiện:
\(\left\{{}\begin{matrix}a=m-4< 0\\\Delta=25\left(m-4\right)^2+8\left(m-4\right)^2\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
Vậy \(m=4\) thì BPT vô nghiệm
Bài 1:
a. ||x|-2| = 1
1) ||x|-2| = |x-2| khi \(x\ge0\)
*) \(x-2\ge0\Leftrightarrow x\ge2\) . Với \(x\ge2\) ta có: \(x-2=1\Leftrightarrow x=3\)
*) \(x-2< 0\Leftrightarrow x< 2\) . Với x<2 ta có: \(-x+2=1\Leftrightarrow x=1\)
2) ||x| - 2| = |-x - 2| khi \(x< 0\)
*) \(-x-2\ge0\Leftrightarrow x\le-2\) . Với \(x\le-2\) ta có: \(-x-2=1\Leftrightarrow x=-3\)
*) \(-x-2< 0\Leftrightarrow x>-2\) . Với \(x>-2\) ta có: \(x+2=1\Leftrightarrow x=-1\)
vậy tập nghiệm của phương trình đã cho \(S=\left\{-3;-1;1;3\right\}\)
b. ||x|-1| = x+4
1) ||x|-1| = |x-1| khi \(x\ge0\)
*) \(x-1\ge0\Leftrightarrow x\ge1\) . Với \(x\ge1\) ta có: \(x-1=x+4\Leftrightarrow0x=5\) (vô nghiệm)
*) \(x-1< 0\Leftrightarrow x< 1\) . Với x<1 ta có: \(-x+1=x+4\Leftrightarrow x=-\dfrac{3}{2}\)
2) ||x|-1| = |-x-1| khi x<0
*) \(-x-1\ge0\Leftrightarrow x\le-1\) . Với \(x\le-1\) ta có: \(-x-1=x+4\Leftrightarrow x=-\dfrac{5}{2}\)
*) \(-x-1< 0\Leftrightarrow x>-1\) . Với x>-1 ta có: \(x+1=x+4\Leftrightarrow0x=3\) (vô nghiệm)
Vậy tập nghiệm của phương trình đã cho là \(S=\left\{-\dfrac{5}{2};-\dfrac{3}{2}\right\}\)
2)a)\(\left|2x+1\right|< \left|x-3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1< x-3\\2x+1< -x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-x< -1-3\\2x+x< -1+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< -4\\3x< 2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -4\\x< \dfrac{2}{3}\end{matrix}\right.\)
Vậy S=...
1:
a: 2x-3=5
=>2x=8
=>x=4
b: (x+2)(3x-15)=0
=>(x-5)(x+2)=0
=>x=5 hoặc x=-2
2:
b: 3x-4<5x-6
=>-2x<-2
=>x>1