K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2023

1:

a: Xét ΔBAI và ΔBKI có

BA=BK

\(\widehat{ABI}=\widehat{KBI}\)

BI chung

Do đó: ΔBAI=ΔBKI

=>IA=IK

b: ΔBAI=ΔBKI

=>\(\widehat{BAI}=\widehat{BKI}=90^0\)

=>IK\(\perp\)BC

mà AH\(\perp\)BC

nên AH//KI

c: BA=BK

=>B nằm trên đường trung trực của AK(1)

IA=IK

=>I nằm trên đường trung trực của AK(2)

Từ (1) và (2) suy ra BI là đường trung trực của AK

d: BA=BK

=>ΔBAK cân tại B

=>\(\widehat{BAK}=\widehat{BKA}\)

\(\widehat{BAK}+\widehat{CAK}=\widehat{BAC}=90^0\)

\(\widehat{BKA}+\widehat{HAK}=90^0\)(ΔKAH vuông tại H)

mà \(\widehat{BAK}=\widehat{BKA}\)

nên \(\widehat{CAK}=\widehat{HAK}\)

=>AK là phân giác của góc HAC

2:

a: Ta có: \(\widehat{ANI}=\widehat{BNH}\)(hai góc đối đỉnh)

\(\widehat{BNH}+\widehat{HBN}=90^0\)(ΔHNB vuông tại H)

Do đó: \(\widehat{ANI}+\widehat{HBN}=90^0\)

mà \(\widehat{HBN}=\widehat{ABI}\)

nên \(\widehat{ANI}+\widehat{ABI}=90^0\)

mà \(\widehat{ABI}+\widehat{AIN}=90^0\)(ΔABI vuông tại A)

nên \(\widehat{ANI}=\widehat{AIN}\)

b: Xét ΔBAN và ΔBKN có

BA=BK

\(\widehat{ABN}=\widehat{KBN}\)

BN chung

Do đó; ΔBAN=ΔBKN

=>NA=NK

c: BI là trung trực của AK

=>BI\(\perp\)AK

Xét ΔBAK có

BI,AH là đường cao

BI cắt AH tại N

Do đó: N là trực tâm của ΔBAK

=>KN\(\perp\)AB

3:

Xét ΔCAE có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAE cân tại C

=>CA=CE

ΔCAE cân tại C

mà CB là đường cao

nên CB là phân giác của \(\widehat{ACE}\)

 

23 tháng 3 2020

a) Xét \(\Delta BAI\)và \(\Delta BAC\)có :

AB : cạnh chung

\(\widehat{BAI}=\widehat{BAC}\left(=90^0\right)\)

AC = AI ( gt )

\(\Rightarrow\Delta BAI=\Delta BAC\left(c-g-c\right)\)

\(\Rightarrow\widehat{ABI}=\widehat{ABC}\)( do 2 tam giác = nhau )

Mà \(\widehat{ABI}+\widehat{BAH}=90^0\)( tổng 3 góc = 1800 mà có 1 góc = 900 ( do AH\(\perp\)BI ) nên tổng 2 góc còn lại = 900 )

\(\Rightarrow\widehat{ABC}+\widehat{BAK}=90^0\)

\(\Rightarrow\widehat{BAH}=\widehat{BAK}\)

=> BA là đường phân giác của \(\widehat{HBK}\)

b) Ta có tam giác vuông ABK = CBA ( ch-gn ) => AB2 = BK . BC (1)

Ta có tam giác vuông ABH = IBA ( ch-gn ) => AB2 = BH . BI (2)

Từ (1) và (2) => BK . BC = BH . BI => HK // IC ( theo định lí Ta-let )

c) Gọi E là giao điểm của HK và BA

Có tam giác BHK cân ( BE là đường cao, phân giác ) => BH = BK

Ta có BA là đường trung trực của HK => HA = KA

Có tam giác vuông BHN = BKM ( gn-cgv ) => HN = KM

=> HA + AN = AK + AM => AN = AM => Tam giác AMN cân tại A

9 tháng 3 2022

Có gì khong hiểu hỏi lại cj nhé:

undefined

undefinedundefined

a, b ,c lần lượt từ trên xuống.

9 tháng 3 2022

Chị tâm lí qué=)

13 tháng 5 2021

a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
AH=AK(gt)
Do đó: ΔAHD=ΔAKD(cạnh huyền-cạnh góc vuông)

13 tháng 5 2021

b) Vì △AHD=△AKD nên DH=DK
Mà AH=AK
Kết hợp 2 điều này lại suy ra AD là trung trực của HK
Ta có đpcm

a: Xét ΔABK và ΔIBK có

BA=BI

\(\widehat{ABK}=\widehat{IBK}\)

BK chung

Do đó: ΔABK=ΔIBK

Suy ra: \(\widehat{BAK}=\widehat{BIK}=90^0\)

hay KI⊥BC

b: Ta có: \(\widehat{HAI}+\widehat{BIA}=90^0\)

\(\widehat{CAI}+\widehat{BAI}=90^0\)

mà \(\widehat{BIA}=\widehat{BAI}\)

nên \(\widehat{HAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc HAC

a)Xét Δ BIC có: 

BA là đường cao

BA là đường trung tuyến 

⇒ ΔBIC cân tại B

Ta có: BAI=BAC(c-g-c)

Ta có: Tam giác BIC cân tại B 

Mà BA là đường cao

⇒BA là đường phân giác của góc HBK

b):

Ta có ΔABK=CBA( ch-gn)=>AB^2=BK.BC(1)

Ta có ΔABH=IBA( ch-gn)=>AB^2=BH.BI(2)

(1)(2)=>BK.BC=BH.BI=>HK//IC ( định lý Ta-lét)

c):

Gọi E là giao điểm của HK&BA

Có Tam giác BHK cân ( BE là đường cao, phân giác)⇒BH=BK

Ta có BA là đường trung trực của HK⇒HA=AK

Có tam giác vg BHN=BKM (gn-cgv⇒HN=KM

⇒HA+AN=AK+AM

⇒AN=AM

⇒Δ AMN cân tại A

23 tháng 3 2020

HELLO I AM NGOC

a: Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC

b: \(AH=\sqrt{9\cdot16}=12\left(cm\right)\)

\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)

=>AC=20(cm)