Bài 2: Tính tổng S= 1 ^ 3 + 2 ^ 3 + 3 ^ 3 +...+51^ 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) S = 1 + 3 + 5 + … + 2015 + 2017
=> S = ( 2017 + 1 ) . 1009 : 2
=> S = 1 018 081
b) 7 + 11 + 15 + 19 + … + 51 + 55
=> S = ( 55 + 7 ) . 13 : 2
=> S = 403
c) S = 2 + 4 + 6 + ...2016+ 2018
=> S = ( 2018 + 2 ) . 1009 : 2
=> S = 1 019 090
a, S = 1 + 3 + 5 + ... + 2015 + 2017 ( cách đều 2 đơn vị )
S có số số hạng là :
( 2017 - 1 ) : 2 + 1 = 1009 ( số )
=> S = ( 1 + 2017 ) . 1009 : 2 = 1018081
b) S = 7 + 11 + 15 + 19 + ... + 51 + 55 ( cách đều 4 đơn vị )
S có số số hạng là :
( 55 - 7 ) : 4 + 1 = 13 ( số )
=> S = ( 7 + 55 ) . 13 : 2 = 403
c) S = 2 + 4 + 6 + ... + 2016 + 2018 ( cách đều 2 đơn vị )
S có số số hạng là :
( 2018 - 2 ) : 2 + 1 = 1009 ( số )
=> S = ( 2 + 2018 ) . 1009 : 2 = 1019090
Câu 2: Ta có \(S=6^2+18^2+30^2+...+126^2\)
\(S=6^2\left(1^2+3^2+5^2+...+21^2\right)\)
\(=6^2.1771=36.1771=63756\)
So sánh:
a) 5^300 và 3^500
b) (-16)^11 và (-32)^9
c) (2^2)^3 và 2^2^3
d) 2^30 + 2^30 + 4^30 và 3^20 + 6^20 + 8^20
e) 4^30 và 3×24^10
g) 2^0 + 2^1 + 2^2 + 2^3 +...+ 2^50 và 2^51
S=1.2+2.3+...+99.100
3S=1.2.3+2.3.3+...+99.100.3
3S=1.2.(3-0)+2.3.(4-1)+...+99.100.(101-98)
3S=1.2.3-0.1.2+2.3.4-1.2.3+...+99.100.101-98.99.100
3S=(1.2.3+2.3.4+...+99.100.101) - (0.1.2+1.2.3+...+98.99.100)
3S=99.100.101-0.1.2
3S=99.100.101
S=33.100.101
S=333300
Từ 1; 2; ………; n có n số hạng
Suy ra 1 +2 +…+ n
Mà theo bài ra ta có
1 +2 +3+…..+n = aaa
Suy ra = a . 111 = a . 3.37
Suy ra: n(n + 1) = 2.3.37.a
Vì tích n(n + 1) chia hết cho số nguyên tố 37 nên n hoặc n + 1 chia hết cho 37
Vì số có 3 chữ số suy ra n+1 < 74 n = 37 hoặc n + 1 = 37
+) Với n = 37 thì (không thỏa mãn )
+) Với n + 1 = 37 thì ( thoả mãn)
Vậy n =36 và a = 6. Ta có: 1+2+3+…..+ 36 = 666
Bài 8:
Tổng số đầu và số cuối là: n + 1
Số cặp là: \(\dfrac{n}{2}\)
Tổng là: \(\dfrac{n}{2}\left(n+1\right)=\dfrac{n^2}{2}+\dfrac{n}{2}=\dfrac{n^2+n}{2}\)
Bài 1 :
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(S=\frac{1}{1}-\frac{1}{2011}=\frac{2010}{2011}\)
Bài 2 :
\(S=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)
\(S=\frac{1}{10}-\frac{1}{61}=\frac{51}{610}\)
Bài 3 :
\(3S=\frac{3}{4\times7}+\frac{3}{7\times11}+...+\frac{3}{19\times22}\)
\(3S=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{19}-\frac{1}{22}\)
\(3S=\frac{1}{4}-\frac{1}{22}\)
\(S=\frac{18}{88}\div3=\frac{6}{88}\)
a, S = 1 + 3 + 5 + ... + 2015 + 2017 ( cách đều 2 đơn vị )
S có số số hạng là :
( 2017 - 1 ) : 2 + 1 = 1009 ( số )
=> S = ( 1 + 2017 ) . 1009 : 2 = 1018081
b) S = 7 + 11 + 15 + 19 + ... + 51 + 55 ( cách đều 4 đơn vị )
S có số số hạng là :
( 55 - 7 ) : 4 + 1 = 13 ( số )
=> S = ( 7 + 55 ) . 13 : 2 = 403
c) S = 2 + 4 + 6 + ... + 2016 + 2018 ( cách đều 2 đơn vị )
S có số số hạng là :
( 2018 - 2 ) : 2 + 1 = 1009 ( số )
=> S = ( 2 + 2018 ) . 1009 : 2 = 1019090
Công thức tính tổng dãy số cách đều:
[số đầu+số cuối]x số số hạng :2
Bn áp dụng công thức nhé
Tính các tổng sau:
1, S=1-2+3_4+..+25-26
S =-1+3-5+7-...-53+55 ( có 28 số hạng )
= (-1+3)+(-5+7)+...+(-53+55) ( có 28:2=14 nhóm )
= 2+2+...+2
= 2 . 14
= 28
S = 1³ + 2³ + 3³ + ... + 51³
= (1 + 2 + 3 + ... + 51)²
= (51.52 : 2)²
= 1326²
= 1758276