tìm số nguyên a,b thoả mãn: 4ab - 4b + 3b = - 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2a+3b là số hữu tỉ
=> 5(2a+3b)=10a+15b là số hữu tỉ
5a-4b là số hữu tỉ
=> 2(5a-4b)=10a -8b là số hữu tỉ
=> (10a+15b)-(10a-8b)=10a+15b-10a+8b=23b
=> b là số hữu tỉ
=> 3b là số hữu tỉ
=> (2a+3b)-3b =2a là số hữu tỉ
=> a là số hữu tỉ
Giải
7 + b =1 vậy b =4
a + ( 3 + 1 ) = 5 vậy a =1
Đáp số : a =1
b =4
\(\left(a+1\right)\left(b+1\right)=4ab\Leftrightarrow\left(\dfrac{1}{a}+1\right)\left(\dfrac{1}{b}+1\right)=4\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b}\right)=\left(x;y\right)\Rightarrow\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-x-y\)
\(P=\dfrac{x}{\sqrt{x^2+3}}+\dfrac{y}{\sqrt{y^2+3}}\le\dfrac{x}{\sqrt{\dfrac{\left(x+3\right)^2}{4}}}+\dfrac{y}{\sqrt{\dfrac{\left(y+3\right)^2}{4}}}=\dfrac{2x}{x+3}+\dfrac{2y}{y+3}\)
\(P\le\dfrac{4xy+6x+6y}{\left(x+3\right)\left(y+3\right)}=\dfrac{4xy+6x+6y}{xy+3x+3y+9}=\dfrac{4\left(3-x-y\right)+6x+6y}{3-x-y+3x+3y+9}=\dfrac{2x+2y+12}{2x+2y+12}=1\)
\(P_{max}=1\) khi \(x=y=1\) hay \(a=b=1\)
a.b = 0
suy ra a = 0 hoặc b = 0
*giả sử a = 0
thì 4b phải bằng 41
suy ra đề bài ko tỏa mãn
*giả sử b =0
thì 4b cũng =0
a + 0 = 41
a = 41- 0 =41
vậy a = 41 và b=0
a.b.=0 thì a hoặc b =0
giả sử a=0
thì 4b =41
suy ra ko thỏa mãn
giả sử b=0
thì 4b cũng sẽ =0
ta có
a + 0 = 41
a = 41 - 0 = 41
vậy a = 41 và b =0
4ab - 4b + 3b = -15
4ab - b = - 15
b - 4ab = 15
b.(1 - 4a) = 15
15 = 3.5; Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
Lập bảng ta có:
Theo bảng trên ta có:
Các cặp (a; b) nguyên thỏa mãn đề bài là
(a; b) = (1; - 5); (4; -1); ( -1; 3); (0; 15)