9+9 bằng bao nhiêu a e
a2 b5 c18 d2999
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với A1 = 12. Ta sẽ chứng minh An =1 + 3 + ... + (2n-1) = n2 (đáp án d)
Giả sử An đúng với n = k tức Ak = 1 + 3 + ... + (2k - 1) = k2. Ta sẽ chứng minh nó cũng đúng với Ak+1
Thật vậy: Ak+1 = 1 + 3 + ... + (2k-1) + (2k+1) = Ak + 2k + 1 = k2 + 2k + 1 = (k+1)2
Vậy...
1: (a-1)(a-3)(a-4)(a-6)+9
=(a^2-7a+6)(a^2-7a+12)+9
=(a^2-7a)^2+18(a^2-7a)+81
=(a^2-7a+9)^2>=0
b: \(A=\dfrac{a^4-4a^3+a^2+4a^3-16a+4+16a-3}{a^2}=\dfrac{16a-3}{a^2}\)
a^2-4a+1=0
=>a=2+căn 3 hoặc a=2-căn 3
=>A=11-4căn 3 hoặc a=11+4căn 3
a: Ta có: \(\left(a^2-1\right)^3-\left(a^4+a^2+1\right)\left(a^2-1\right)\)
\(=a^6-3a^4+3a^2-1-\left(a^6-1\right)\)
\(=-3a^4+3a^2\)
b: Ta có: \(\left(a^4-3a^2+9\right)\left(a^2+3\right)-\left(a^2+3\right)^3\)
\(=a^6+27-a^6-9a^4-27a^2-27\)
\(=-9a^4-27a^2\)
a) \(a^9:a^7\cdot\left(a^2\right)^2\)
\(=a^9:a^7\cdot a^4\)
\(=a^2\cdot a^4\)
\(=a^6\)
b) \(\left(ab\right)^6:b^5:b\)
\(=a^6b^6:b^4\)
\(=a^6b^2\)
c