1+1=? hãy cho câu trả lời
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 17 :
- Ta có : AD là đường phân giác của tam giác ABC .\(\Rightarrow\dfrac{AB}{BD}=\dfrac{AC}{CD}\)
- Áp dụng tính chất dãy tỉ số bằng nhau :\(\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{12}{BD}=\dfrac{16}{CD}\)
\(=\dfrac{12+16}{BD+CD}=\dfrac{28}{14}=2=\dfrac{16-12}{CD-BD}\)
\(\Rightarrow CD-BD=\dfrac{4}{2}=2\)
- Đáp án C.
Câu 16 :
- Ta có : \(\widehat{COB}=2\widehat{BAC}=120^o\)
- Ta lại có : \(S=S_{\stackrel\frown{BC}}-S_{OBC}=\dfrac{\pi R^2.120}{360}-\dfrac{1}{2}R.R.Sin120=\dfrac{\pi R^2}{3}-\dfrac{R^2\sqrt{3}}{4}\)
\(=\dfrac{R^2\left(4\pi-3\sqrt{3}\right)}{12}\) ( đvdt )
Đáp án D
Anh đừng buồn bởi đây là những câu hỏi 0.5 đ ở cuối đề thi và có thể mấy bạn học sinh khá hay giỏi mới làm được đó là lớp 9 còn anh lớp 10 thì .... chắc quyên thôi ...
Câu 1:
PT \(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{2;3\right\}\)
Câu 2:
a) HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+4y=10\\3x+4y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{5-x}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=5\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-5;5\right)\)
b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\y=2x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2;-3\right)\)
Câu 5:
Đặt \(P=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{1}{2xy}\)
Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta có:
\(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{4}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\)
Áp dụng bất đẳng thức Cosi ta có:
\(2xy\le\dfrac{\left(x+y\right)^2}{2}\le\dfrac{1}{2}\Rightarrow\dfrac{1}{2xy}\ge2\)
\(\Rightarrow P\ge6\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
5.
Không mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\Rightarrow0\le c\le1\Rightarrow1-\dfrac{c}{2}>0\)
\(P=bc+ca+ab\left(1-\dfrac{c}{2}\right)\ge0\)
\(P_{min}=0\) khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị
\(P=c\left(a+b\right)+ab\left(1-\dfrac{c}{2}\right)\le c\left(3-c\right)+\dfrac{\left(a+b\right)^2}{4}\left(1-\dfrac{c}{2}\right)\)
\(P\le3c-c^2+\dfrac{\left(3-c\right)^2}{4}\left(1-\dfrac{c}{2}\right)\)
\(P\le\dfrac{5}{2}-\dfrac{c^3}{8}+\dfrac{3c}{8}-\dfrac{1}{4}=\dfrac{5}{2}-\dfrac{1}{8}\left(c-1\right)^2\left(c+2\right)\le\dfrac{5}{2}\)
\(P_{max}=\dfrac{5}{2}\) khi \(a=b=c=1\)
Cách 2 phần tìm max bài 5:
Áp dụng BĐT: \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)
\(\Leftrightarrow abc\ge-8abc+12\left(ab+bc+ca\right)-27\)
\(\Leftrightarrow3abc+27\ge12\left(ab+bc+ca\right)-6abc\)
\(\Leftrightarrow ab+bc+ca-\dfrac{1}{2}abc\le\dfrac{abc}{4}+\dfrac{9}{4}\le\dfrac{1}{4}.\left(\dfrac{a+b+c}{3}\right)^3+\dfrac{9}{4}=\dfrac{5}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
= 2
hỏi lạ vậy?
2 nè
hỏi kì zợ