K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

A = \(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{9.10}\)

A = \(\frac{3}{1}-\frac{3}{2}+\frac{3}{2}-\frac{3}{3}+\frac{3}{3}-\frac{3}{4}+...+\frac{3}{9}-\frac{3}{10}\)

A = \(\frac{3}{1}-\frac{3}{10}\)

A = \(\frac{27}{10}\)

Vậy A = \(\frac{27}{10}\)

7 tháng 8 2017

\(\frac{3}{1\cdot2}+\frac{3}{2\cdot3}+\frac{3}{3\cdot4}+...+\frac{3}{9\cdot10}\)

\(=3\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{10}\right)\)

\(=3\frac{9}{10}=\frac{27}{10}\)

3 tháng 1 2018

Chị dùg cách tính tổng đi

1. Tìm dãy cách đều bao nhiêu

2. Từ công thức tính tổng rồi suy ra

18 tháng 11 2021

đợi mãi mà chẳng có ai giúp hết zợ

haizzz..."tỏ ra ý chán nản"

18 tháng 11 2021

DÀI QUÁ

1 tháng 4 2019

*S=1-1/4+1/4-1/7+1/7-1/11+1/11-1/14+1/14-1/17

S=1-1/17=16/17

*M=2(1/1.2+1/2.3+...+1/15.16)

M=2(1-1/2+1/2-1/3+..+1/15-1/16)

M=2(1-1/16)

M=2.15/16

M=15/8

1 tháng 4 2019

:w

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.11}+\frac{3}{11.14}+\frac{3}{14.17}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)

\(S=1-\frac{1}{17}\)

\(S=\frac{16}{17}\)

\(M=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{15.16}\)

\(M=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(M=2.\left(1-\frac{1}{16}\right)\)

\(M=2.\frac{15}{16}\)

\(=\frac{30}{16}=\frac{15}{8}\)

18 tháng 3 2018

1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>S 

Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên. 
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3 
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.

2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1) 

4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4 

ghi dọc cho dễ nhìn: 
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1) 
ad cho k chạy từ 2 đến n ta có: 
1.2.3.4 = 1.2.3.4 
2.3.4.4 = 2.3.4.5 - 1.2.3.4 
3.4.5.4 = 3.4.5.6 - 2.3.4.5 
... 
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n 
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1) 
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn) 
4S = (n-1)n(n+1)(n+2) 

3. 

26 tháng 11 2017

Ta có : A=1.2+2.3+3.4+....+2015.2016

=>3A= 1.2.3 + 2.3.3 + 3.4.3 + 4.5.3 + ... + 2017.2018.3

=>3A= 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5-2 ) + 4.5.( 6-3 ) + ... 2017 . 2018 . ( 2019 - 2016 )

=>3A=-1.2.3 + 2.3.4 - 2.3.1 + 3.4.5 - 3.4.2 + 4.5.6 - 4.5.3 +.....+ 2017 . 2018 .2019 - 2017 . 2018 . 2016

=>A= 2017 . 2018 . 2019
 

31 tháng 3 2019

=3*(1/1.2+1/2.3+...+1/2018.2019)

=3(1-1/2+1/2-1/3+...+1/2018-1/2019)

=3(1-1/2019)

=3*2018/2019

=2018/673

31 tháng 3 2019

\(A=\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{2018.2019}\)

  \(=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\right)\)

   \(=3.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)

    \(=3.\left(1-\frac{1}{2019}\right)\)

     \(=3.\frac{2018}{2019}=\frac{2018}{673}\)

25 tháng 1 2016

1,2 hay 1 x 2

 

17 tháng 5 2022

A=3/1.2+3/2.3+3/3.4+3/4.5+...+3/2021.2022

A=3(1/1.2+1/2.3+1/3.4+1/4.5+...+1/2021.2022)

A=3(1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/2021-1/2022)

A=3[1/1+(1/2-1/2)+(1/3-1/3)+(1/4-1/4)+...+(1/2021-1/2021)-1/2022]

A=3[1/1+0+0+0+...+0-1/2022

A=3(1/1-1/2022)

A=3(2022/2022-1/2022)

A=3.2021/2022

A=2021/674

17 tháng 5 2022

Bn Tham Khảo:

https://hoc247.net/hoi-dap/toan-6/tinh-tong-s-3-1-2-3-2-3-3-3-4-3-4-5-3-2015-2016-faq188428.html