K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2023

a: Xét ΔMNP vuông tại M có MH là đường cao

nên \(NH\cdot PH=MH^2\left(1\right)\)

Xét ΔNHM vuông tại H có HE là đường cao

nên \(ME\cdot MN=MH^2\left(2\right)\)

Từ (1) và (2) suy ra \(NH\cdot PH=ME\cdot MN\)

b: Xét ΔMNP vuông tại M có MH là đường cao

nên \(\left\{{}\begin{matrix}MP^2=PH\cdot PN\\NM^2=NH\cdot NP\end{matrix}\right.\)

=>\(\dfrac{PH\cdot PN}{NH\cdot NP}=\dfrac{MP^2}{MN^2}\)

=>\(\dfrac{NH}{PH}=\left(\dfrac{MN}{MP}\right)^2\)

c: ΔMHP vuông tại H có HF là đường cao

nên \(MF\cdot MP=MH^2\)

mà \(ME\cdot MN=MH^2\)

nên \(MF\cdot MP=ME\cdot MN\)

=>\(\dfrac{MF}{ME}=\dfrac{MN}{MP}\)

Xét ΔMFN vuông tại M và ΔMEP vuông tại M có

\(\dfrac{MF}{ME}=\dfrac{MN}{MP}\)

Do đó: ΔMFN đồng dạng với ΔMEP

=>\(\widehat{MNF}=\widehat{MPE}\)

2: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHN vuông tại H có HD là đường cao ứng với cạnh huyền MN, ta được:

\(MD\cdot MN=MH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHP vuông tại H có HE là đường cao ứng với cạnh huyền MP, ta được:

\(ME\cdot MP=MH^2\left(2\right)\)

Từ (1) và (2) suy ra \(MD\cdot MN=ME\cdot MP\)

a: Xét ΔHNM vuông tại H và ΔMNP vuôg tại M có

góc N chung

=>ΔHNM đồng dạng với ΔMNP

b: NP=căn 3^2+4^2=5cm

MH=3*4/5=2,4cm

NH=3^2/5=1,8cm

c; Đề bài yêu cầu gì?

a: Xét tứ giác MDHE có

\(\widehat{MDH}=\widehat{MEH}=\widehat{EMD}=90^0\)

=>MDHE là hình chữ nhật

b: MDHE là hình chữ nhật

=>MH cắt DE tại trung điểm của mỗi đường

mà O là trung điểm của MH

nên O là trung điểm của DE

=>DO=OE

c: ΔHDN vuông tại D

mà DI là đường trung tuyến

nên DI=HI=IN

=>ΔIHD cân tại I

ΔPEH vuông tại E

mà EK là đường trung tuyến

nên EK=KP=KH

=>ΔKEH cân tại K

\(\widehat{KED}=\widehat{KEH}+\widehat{DEH}\)

\(=\widehat{KHE}+\widehat{HMD}\)

\(=\widehat{HMD}+\widehat{HND}=90^0\)

=>KE vuông góc ED(1)

\(\widehat{IDE}=\widehat{IDH}+\widehat{EDH}\)

\(=\widehat{IHD}+\widehat{EMH}\)

\(=\widehat{HPM}+\widehat{HMP}=90^0\)

=>ID vuông góc DE(2)

Từ (1) và (2) suy ra DI//EK

8 tháng 11 2023

cảm ơn nha bạn

 

29 tháng 12 2023

a: Xét ΔPMN có

F,E lần lượt là trung điểm của PM,PN

=>FE là đường trung bình của ΔPMN

=>FE//MN và \(FE=\dfrac{MN}{2}\)
Ta có: FE//MN

D\(\in\)MN

Do đó: FE//MD

Ta có: \(FE=\dfrac{MN}{2}\)

\(MD=DN=\dfrac{MN}{2}\)

Do đó: FE=MD=ND

Xét tứ giác MDEF có

FE//MD

FE=MD

Do đó: MDEF là hình bình hành

Hình bình hành MDEF có \(\widehat{FMD}=90^0\)

nên MDEF là hình chữ nhật

b: ta có: FE//MN

D\(\in\)MN

Do đó: FE//DN

Xét tứ giác NDFE có

FE//ND

FE=ND

Do đó: NDFE là hình bình hành

=>NF cắt DE tại trung điểm của mỗi đường

mà I là trung điểm của DE

nên I là trung điểm của NF

=>N,I,F thẳng hàng

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Bạn xem lời giải tại đây:

https://hoc24.vn/cau-hoi/cho-tam-giac-mnp-vuong-tai-m-co-d-e-f-lan-luot-la-trung-diem-cua-mn-np-mpa-tu-giac-mdef-la-hinh-gi-vi-saob-goi-i-la-trung-diem-cua-de-chung-minh-3-diem-n-i-f-thang-hangc-chung-minh-if.8722192330796

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Lời giải:

a. $D,E,F$ là trung điểm $MN,NP,MP$ nên $EF, DE$ lần lượt là đường trung bình của tam giác $ABC$ ứng với lần lượt 2 cạnh $MN, MP$

$\Rightarrow EF\parallel MN, DE\parallel MP$

Mà $MN\perp MP$ nên $EF\perp MP, DE\perp MN$

$\Rightarrow \widehat{EFM}=\widehat{EDM}=90^0$

Tứ giác $MDEF$ có 3 góc vuông $\widehat{M}=\widehat{D}=\widehat{F}$ nên là hình chữ nhật.

b.

Gọi $I'$ là giao điểm $NF$ và $DE$

Do $DE\parallel MP$ nên $DI'\parallel MF$

Áp dụng định lý Talet:

$\frac{DI'}{MF}=\frac{ND}{NM}=\frac{1}{2}$

$\Rightarrow MF=2DI'$

Mà $MF=DE$ (do $MFED$ là hcn) 

$\Rightarrow DE=2DI'$

$\Rightarrow I'$ là trung điểm của $DE$
$\Rightarrow I\equiv I'$

Mà $I', N, F$ thẳng hàng nên $I, N, F$ thẳng hàng.

c.

Có: $\frac{NI}{NF}=\frac{ND}{NM}=\frac{1}{2}$ nên $I$ là trung điểm $NF$

$DF$ là đường trung bình của tam giác $ABC$ ứng với cạnh $BC$

$\Rightarrow DF=\frac{1}{2}NP\Rightarrow ME=DF=\frac{1}{2}NP$.

Khi đó ta có:

$NF.ME-IF.PE = 2IF.\frac{1}{2}NP-IF.PE$

$=IF.NP-IF.PE = IF(NP-PE) = IF.NE$

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Hình vẽ:

a: Xét tứ giác MDHE có 

\(\widehat{MDH}=\widehat{MEH}=\widehat{EMD}=90^0\)

Do đó: MDHE là hình chữ nhật