giúp mink làm với Cho ΔABC có AB AC < . M là trung điểm của BC. Trên tia đối của tia MA lấy điểm I sao cho MA MI = . ( Hình 18). a) Chứng minh ΔABM ΔICM = . b) Chứng minh AB IC ∥ . c) Kẻ BH và CK vuông góc với AI . Chứng minh BH CK = . d) BH cắt AC tại E CK , cắt BI tại F . Chứng minh EMF , , thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cậu tự vẽ hình nhé
a . và có:
AM= NM (gt)
= (2 góc đối đỉnh)
CM= MB (gt)
(đpcm)
b . ΔAMB và ΔNMC có:
AM= NM (gt)
= (2 góc đối đỉnh)
CM= BM (gt)
⇒ΔAMB=ΔNMC(c.g.c)
⇒\(\widehat{BAM}\)= (hai góc tương ứng)
Hai góc đồng vị và bằng nhau nên AB//NC (đpcm)
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
DO đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
c: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
DO đó: ABDC là hình bình hành
mà AB=AC
nên ABDC là hình thoi
=>CM là tia phân giác của góc DCA
Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath
a)
Sửa đề: Chứng minh ΔABM=ΔACM
Xét ΔABM và ΔACM có
AB=AC(gt)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
Ta có: AB=AC(gt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
b) Xét ΔABM vuông tại M và ΔDCM vuông tại M có
MB=MC(M là trung điểm của BC)
AM=DM(gt)
Do đó: ΔABM=ΔDCM(hai cạnh góc vuông)
⇒\(\widehat{ABM}=\widehat{DCM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong
nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)
a: Xét ΔAMB và ΔDMC có
MA=MD
góc AMB=góc DMC
MB=MC
Do đó: ΔAMB=ΔDMC
b: ΔAMB=ΔDMC
nên góc MAB=góc MDC
=>AB//CD
a: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔABM=ΔDCM
a: Xét ΔABM và ΔICM có
MA=MI
\(\widehat{AMB}=\widehat{IMC}\)
MB=MC
Do đó: ΔABM=ΔICM
b: ΔABM=ΔICM
=>\(\widehat{ABM}=\widehat{ICM}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CI
c: Xét ΔBHM vuông tại H và ΔCKM vuông tại K có
MB=MC
\(\widehat{BMH}=\widehat{CMK}\)
Do đó: ΔBHM=ΔCKM
=>BH=CK
d: BH\(\perp\)AI
CK\(\perp\)AI
Do đó: BH//CK
=>BE//CF
Xét tứ giác BECF có
BE//CF
CE//BF
Do đó: BECF là hình bình hành
=>BC cắt EF tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của EF
=>E,M,F thẳng hàng
cảm ơn bn