K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2023

a: Xét ΔABM và ΔICM có

MA=MI

\(\widehat{AMB}=\widehat{IMC}\)

MB=MC

Do đó: ΔABM=ΔICM

b: ΔABM=ΔICM

=>\(\widehat{ABM}=\widehat{ICM}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CI

c: Xét ΔBHM vuông tại H và ΔCKM vuông tại K có

MB=MC

\(\widehat{BMH}=\widehat{CMK}\)

Do đó: ΔBHM=ΔCKM

=>BH=CK

d: BH\(\perp\)AI

CK\(\perp\)AI

Do đó: BH//CK

=>BE//CF

Xét tứ giác BECF có

BE//CF

CE//BF

Do đó: BECF là hình bình hành

=>BC cắt EF tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của EF

=>E,M,F thẳng hàng

25 tháng 11 2023

cảm ơn bn

 

16 tháng 11 2021

Cậu tự vẽ hình nhé

a .ΔAMC và ΔNMB có:

AM= NM (gt)

AMC^ =NMB^ (2 góc đối đỉnh)

CM= MB (gt)

⇒ΔAMC=ΔNMB(c.g.c)

⇒AC=BN (đpcm)

 

b . ΔAMB và ΔNMC có:

AM= NM (gt)

AMB^NMC^ (2 góc đối đỉnh)

CM= BM (gt)

⇒ΔAMB=ΔNMC(c.g.c)

\(\widehat{BAM}\)CNM^ (hai góc tương ứng)

Hai góc đồng vị ​​BAM^​ và CNM^ bằng nhau nên AB//NC (đpcm)

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

DO đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là đường cao

c: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

DO đó: ABDC là hình bình hành

mà AB=AC

nên ABDC là hình thoi

=>CM là tia phân giác của góc DCA

26 tháng 2 2020

Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath

13 tháng 12 2020

a)

Sửa đề: Chứng minh ΔABM=ΔACM

Xét ΔABM và ΔACM có 

AB=AC(gt)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

Ta có: AB=AC(gt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

b) Xét ΔABM vuông tại M và ΔDCM vuông tại M có 

MB=MC(M là trung điểm của BC)

AM=DM(gt)

Do đó: ΔABM=ΔDCM(hai cạnh góc vuông)

\(\widehat{ABM}=\widehat{DCM}\)(hai góc tương ứng)

mà \(\widehat{ABM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong

nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC...
Đọc tiếp

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.
Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.
Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC và AM ⊥ BC.
Bài 9: Cho ΔABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AD // BC và AD = BC. Chứng minh: a) ΔABC = ΔCDA. b) AB // CD và ΔABD = ΔCDB.
Bài 10: Cho ΔABC có ∠A = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác ∠B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD. b) Chứng minh: DA = DE. c) Tính số đo ∠BED.
Bài 11: Cho ΔABD, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ΔABM = ΔECM. b) AB = CE và  AC // BE.
(* Chú ý: Δ là tam giác, ∠ là góc, ⊥ là vuông góc, // là song song.)

0
20 tháng 12 2022

giúp mình với

20 tháng 12 2022

a: Xét ΔAMB và ΔDMC có

MA=MD

góc AMB=góc DMC

MB=MC

Do đó: ΔAMB=ΔDMC

b: ΔAMB=ΔDMC

nên góc MAB=góc MDC

=>AB//CD

24 tháng 12 2021

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM