K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

do \(\frac{5}{20}< 1;\frac{5}{21}< 1;\frac{5}{22}< 1;\frac{5}{23}< 1;\frac{5}{24}< 1\)

\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}< 1\)

Vậy S < 1

Mk nghĩ thế bn ạ

Ai thấy tớ đúng ủng hộ nha

     

17 tháng 5 2017

Ta có: \(\frac{5}{20}>\frac{5}{25}\)

\(\frac{5}{21}>\frac{5}{25}\)

\(\frac{5}{22}>\frac{5}{25}\)

\(\frac{5}{23}>\frac{5}{25}\)

\(\frac{5}{24}>\frac{5}{25}\)

=> \(S>\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}=5\cdot\frac{5}{25}=\frac{25}{25}=1\)

Vậy S > 1

15 tháng 5 2017

Ta có :

\(\frac{5}{20}>\frac{5}{25}\)

\(\frac{5}{21}>\frac{5}{25}\)

\(\frac{5}{22}>\frac{5}{25}\)

\(\frac{5}{23}>\frac{5}{25}\)

\(\frac{5}{24}>\frac{5}{25}\)

\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>5.\frac{5}{25}=1\)

\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>1\)

15 tháng 5 2017

ta có S=5/20+5/21+5/22+5/23+5/24>5/25+5/25+5/25+5/25+5/25=5/25*5=1

=>đpcm

4 tháng 4 2018

Easy!!

\(S=\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{35}>\dfrac{1}{29}+\dfrac{1}{29}+...+\dfrac{1}{29}\) (15 phân số \(\dfrac{1}{29}\))

\(=\dfrac{1.15}{29}=\dfrac{15}{29}>\dfrac{1}{2}\) (*)

\(\Rightarrow\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{35}>\dfrac{1}{2}^{\left(đpcm\right)}\)

P/s: đpcm là điều phải chứng minh

4 tháng 4 2018

\(S=\dfrac{1}{21}+\dfrac{1}{22}+......+\dfrac{1}{35}\)

\(S=\dfrac{1}{21}+\dfrac{1}{22}+.........+\dfrac{1}{35}>\dfrac{1}{29}+\dfrac{1}{29}+\dfrac{1}{29}+........+\dfrac{1}{29}\)( 15 phân số \(\dfrac{1}{29}\))

\(S=\dfrac{15}{29}>\dfrac{1}{2}\)

\(S>\dfrac{1}{2}\)

Vậy S > \(\dfrac{1}{2}\)(đpcm)

17 tháng 5 2017

Giải:

Ta có:

\(\dfrac{5}{20}>\dfrac{5}{25}\) ; \(\dfrac{5}{21}>\dfrac{5}{25}\) ;\(\dfrac{5}{22}>\dfrac{5}{25}\) ; \(\dfrac{5}{23}>\dfrac{5}{25}\) ; \(\dfrac{5}{24}>\dfrac{5}{25}\)

\(\Rightarrow S=\dfrac{5}{20}+\dfrac{5}{21}+\dfrac{5}{22}+\dfrac{5}{23}+\dfrac{5}{24}>\dfrac{5}{25}+\dfrac{5}{25}+\dfrac{5}{25}+\dfrac{5}{25}+\dfrac{5}{25}=1\)

Vậy \(S=\dfrac{5}{20}+\dfrac{5}{21}+\dfrac{5}{22}+\dfrac{5}{23}+\dfrac{5}{24}>1\) ( đpcm )

17 tháng 5 2017

Giải:

Dễ thấy:

\(20< 25\Leftrightarrow\dfrac{5}{20}>\dfrac{5}{25}\)

\(21< 25\Leftrightarrow\dfrac{5}{21}>\dfrac{5}{25}\)

\(.....................\)

\(24< 25\Leftrightarrow\dfrac{5}{24}>\dfrac{5}{25}\)

Cộng vế theo vế ta có:

\(S>\dfrac{5}{25}+\dfrac{5}{25}+...+\dfrac{5}{25}=\dfrac{5}{25}.5=\dfrac{25}{25}=1\)

Vậy \(S>1\) (Đpcm)

12 tháng 6 2021

                                    Giải

Đặt A=1/21+1/22+1/23+1/24+...+1/80

Ta có:

A=(1/21+1/22+...+1/40)+(1/41+...+1/80)

→A>(1/40+1/40+...+1/40)+(1/80+..+1/80)

→A>20/40+40/80

→A>1/2+1/2

→A>1 (1)

Lại có:

A=(1/21+1/22+...+1/40)+(1/41+...+1/80)

→A<(1/20+1/20+...+1/20)+(1/40+...+1/40)

→A<20/20+40/40

→A<2 (2)

Từ (1),(2)→1<A<2

→A không là số tự nhiên

11 tháng 7 2021

Đặt A=1/21+1/22+1/23+1/24+...+1/80

Ta có:

A=(1/21+1/22+...+1/40)+(1/41+...+1/80)

→A>(1/40+1/40+...+1/40)+(1/80+..+1/80)

→A>20/40+40/80

→A>1/2+1/2

→A>1 (1)

Lại có:

A=(1/21+1/22+...+1/40)+(1/41+...+1/80)

→A<(1/20+1/20+...+1/20)+(1/40+...+1/40)

→A<20/20+40/40

→A<2 (2)

Từ (1),(2)→1<A<2

→A không là số tự nhiên

10 tháng 4 2018

Ta có : \(S=\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{199}+\frac{1}{200}\)

\(\Rightarrow S>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\) ( 181 phân số )

\(\Rightarrow S>\frac{181}{200}>\frac{180}{200}=\frac{9}{10}\)

\(\Rightarrow S>\frac{9}{10}\)       \(\Rightarrowđpcm\)

12 tháng 5 2021

C = 120120 + 121121 + 122122 + ... + 12001200

⇒ CC> 12001200 + 12001200 + 12001200 + ...... + 12001200 ( 181181 phân số )

⇒ CC > 181200181200 > 180200180200 = 910910

⇒ CC >910

1 tháng 5 2021

Giúp mình câu này đi, mình cần gấp lắm, ai đúng mình k cho.