có bao nhiêu số tự nhiên có 2 chữ số chia hết cho 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Câc số tự nhiên có 4 chữ số chia hết cho 7 là các số thuộc dãy số sau:
1001; 1008;...;9996
Dãy số trên là dãy số cách đều với khoảng cách là: 1008 - 1001 = 7
Số số hạng của các số trên là: (9996 -1001) : 7 + 1 = 1286 (số)
Vậy có 1286 số có 4 chữ số chia hết cho 7
Các số tự nhiên có 5 chữ số chia hết cho 9 là các số thuộc dãy số sau:
10008; 10017;..;99999
Dãy số trên là dãy số cách đều với khoảng cách là: 10017 - 1008 = 9
Số số hạng của dãy số trên là: (99999 - 10008): 9 + 1 = 10000
a) số nhỏ nhất có tám chữ số khác nhau 12345678 chia cho 1111 được thưong nguyên là 11112.
Quy trình: X=X+1:1111X, CALC X? 11112, ==... Đến khi X=X+1=11115 ta được kết quả so nhỏ nhất cần tìm là 12348765.
b) số lon nhất có tám chữ số khác nhau 87654321 chia cho 1111 được thưong nguyên là 78896.
Quy trình: X=X-1:1111X, CALC X? 78897, ==... Đến khi X=X+1=78894 ta được kết quả so lon nhất cần tìm là 12348765.
Có bao nhiêu số tự nhiên có 3 chữ số khác nhau chia hết cho5 :
Xét với chữ số tận cùng là 0 : + Có 9 cách chọn chữ số hàng trăm
+ Có 8 cách chọn chữ số hàng chục
+ Có 1 cách chọn chữ số hàng đơn vị : 0
=> Có số số tự nhiên có 3 chữ số khác nhau chia hết cho 5 t/c là 0 : 9.8.1=72 ( số )
Xét với chữ số tận cùng là 5 : + Có 8 cách chọn chữ số hàng trăm
+ Có 8 cách chọn chữ số hàng chục
+ Có 1 cách chọn chữ số hàng đơn vị
=> Có số số tự nhiên có 3 chữ số khác nhau chia hết cho 5 t/c là 5 là : 8.8.1 = 64 ( số )
=> Có số số tự nhiên có 3 chữ số khác nhau chia hết cho 5 : 72 + 64 = 136 ( số )
Tương tự .
Bạn vào xem ở đây nè :http://diendan.hocmai.vn/showthread.php?t=344046
a) Số tự nhiên nhỏ nhất có 3 c/s chia hết cho 3 : 102
Số tự nhiên lớn nhất có 3 c/s chia hết cho 3 là : 999
Khoảng cách là 3
Số số hạng thỏa mãn là : ( 999 - 102 ) : 3 + 1 = 300 ( số )
b) đang nghĩ
12 số
Like ik
Số có 2 chữ số chia hết cho 8 là: \(16;24;32;40;48;56;64;72;80;88;96\).
Vậy có 11 số tự nhiên có 2 chữ số chia hết cho 8.
\(#WendyDang\)