Cho tam giác Abc vuông tại A. Đường cao AH. Lấy I là trung điểm của AC
Chứbg minh I là giao điểm của ba đường trung trực của tam giác AHC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔHAC vuông tại H
=>ΔHAC nội tiếp đường tròn đường kính AC
=>I là giao điểm của 3 đường trung trực của ΔAHC
Xét ΔHAC có HK/HA=HD/HC
nên KD//AC
b: DK//AC
AC vuông góc AB
=>DK vuông góc AB
Xét ΔBAD có
DK,AH là đường cao
DK cắt AH tại K
=>K là trực tâm
=>BK vuông góc AD
a) Vì ∆ABC cân tại A có AH là đường cao nên AH cũng là đường trung tuyến
Suy ra BH=CH
Xét ∆AHB và ∆AHC có
AH là cạnh chung
BH=CH (cmt)
AB=AC (∆ABC cân tại A)
Do đó ∆AHB=∆AHC
Xét ∆AMH ta có
AD vuông góc với MH (HD vuông góc AB)
Suy ra AD là đường cao của ∆AMH (1)
DH=DM (gt)
Nên AD là đường trung bình của ∆AMH (2)
Từ (1) và (2) suy ra ∆AMH cân tại A
Suy ra AM=AH
a: AC là đường trung trực của HI
=>AC\(\perp\)HI tại trung điểm của HI
=>AC\(\perp\)HI tại M và M là trung điểm của HI
AB là đường trung trực của HK
=>AB\(\perp\)HK tại trung điểm của HK
=>AB\(\perp\)HK tại N và N là trung điểm của HK
Xét ΔAHI có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHI cân tại A
b: Xét ΔAHK có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAHK cân tại A
Ta có: ΔAHK cân tại A
mà AB là đường cao
nên AB là phân giác của góc HAK
=>\(\widehat{HAK}=2\cdot\widehat{HAB}\)
Ta có: ΔAHI cân tại A
mà AC là đường cao
nên AC là phân giác của góc HAI
=>\(\widehat{HAI}=2\cdot\widehat{HAC}\)
Ta có: \(\widehat{IAK}=\widehat{IAH}+\widehat{HAK}\)
\(=2\cdot\widehat{HAB}+2\cdot\widehat{HAC}\)
\(=2\left(\widehat{HAB}+\widehat{HAC}\right)=2\cdot90^0=180^0\)
=>I,A,K thẳng hàng
mà AK=AI(=AH)
nên A là trung điểm của KI
c: Xét ΔHKI có
M,N lần lượt là trung điểm của HI,HK
=>MN là đường trung bình của ΔHKI
=>MN//KI