K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

Do tam giác ABC vuông tại A nên ta có biểu thức: \(AB^2+AC^2=BC^2\)
Thay các dữ kiện \(BC=12cm\) ; \(AB=\frac{2}{3}AC\) vào biểu thức trên ta được:
\(\left(\frac{2}{3}AC\right)^2+AC^2=12^2\)
\(\Rightarrow\frac{4}{9}AC^2+AC^2=144\)
\(\Rightarrow\frac{13}{9}AC^2=144\)
\(\Rightarrow AC^2=\frac{1296}{13}\)
Do AC là một cạnh tam giác nên \(AC>0\)\(\Rightarrow AC=\frac{36}{\sqrt{13}}cm\)
Khi đó:
\(AB=\frac{2}{3}AC\)
\(\Rightarrow AB=\frac{2}{3}\cdot\frac{36}{\sqrt{13}}\)
\(\Rightarrow AB=2\cdot\frac{12}{\sqrt{13}}\)
\(\Rightarrow AB=\frac{24}{\sqrt{13}}cm\)

5 tháng 7 2017

áp dụng định lí PITAGO vào tam giác vuông ABC : \(AB^2+AC^2=BC^2\)

                                                                    \(\Leftrightarrow AB^2+\left(\frac{3}{2}AB\right)^2=12^2\)

                                                                        \(\Leftrightarrow\frac{13}{4}AB^2=12^2\Rightarrow AB=\frac{24\sqrt{13}}{13}\)

SUY RA \(AC=\frac{36\sqrt{13}}{13}\)

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{13}{9}=144\)

\(\Leftrightarrow AC^2=\dfrac{1296}{13}\)

\(\Leftrightarrow AC=\dfrac{36\sqrt{13}}{13}cm\)

\(\Leftrightarrow AB=\dfrac{24\sqrt{13}}{13}cm\)

Hình vẽ chỉ mang tính chất minh họa, bạn tham khảo nhé.

undefined

15 tháng 8 2016

Đặt AC = x (x > 0) => AC = 2/3x

Áp dụng đ/l Pytago , ta có : \(AB^2+AC^2=BC^2\Leftrightarrow x^2+\left(\frac{2x}{3}\right)^2=12^2\Leftrightarrow\frac{13}{9}x^2=144\Leftrightarrow x^2=\frac{1296}{13}\Leftrightarrow x=\frac{36\sqrt{13}}{13}\)(vì x > 0)

Suy ra \(AC=\frac{36\sqrt{13}}{13};AB=\frac{24\sqrt{13}}{13}\)

 

16 tháng 7 2023

Ta có \(\Delta ABC\) vuông tại A nên:

\(BC^2=AB^2+AC^2\)

Mà: \(AB=\dfrac{2}{3}AC\)

\(\Rightarrow BC^2=\left(\dfrac{2}{3}AC\right)^2+AC^2\)

\(\Rightarrow12^2=\left(\dfrac{2}{3}AC\right)^2+AC\)

\(\Rightarrow144=\dfrac{4}{9}AC^2+AC^2\)

\(\Rightarrow144=\dfrac{13}{9}AC^2\)

\(\Rightarrow AC^2=\dfrac{144}{\dfrac{13}{9}}\approx100\)

\(\Rightarrow AC\approx\sqrt{100}\approx10\left(cm\right)\)

Ta có \(AC=10cm\Rightarrow AB=\dfrac{2}{3}AC=\dfrac{2}{3}\cdot10\approx6,6\left(cm\right)\) 

Vậy: ....

18 tháng 7 2023

sai rồi ông ơi

 

 

7 tháng 8 2023

Áp dụng định lý pytago có:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\left(\dfrac{3}{2}AC\right)^2+AC^2=12^2\)

\(\Leftrightarrow AC=\dfrac{24\sqrt{13}}{13}\) cm

Suy ra \(AB=\dfrac{36\sqrt{13}}{13}\) cm

Vậy...

26 tháng 6 2016

hyyguig

20 tháng 3 2017

sma\\àm thế nhỉ