tìm các chữ số x, y để số tự nhiên 62x1y chia hết cho cả 2, 5 và 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a
Ta có a chia 5 dư 3 => a = 5b + 3
<=> 2a = 10b + 6
2a-1 = 10b + 5 \(⋮\)5 ( 1 )
a chia 7 dư 4 => a= 7c +4
2a = 14c + 8 => 2a - 1 = 14b + 7 \(⋮7\)( 2 )
a chia 9 dư 5 => a = 9d + 5
<=> 2a = 18d + 10 => 2a -1 = 18d + 9 \(⋮9\)( 3 )
Từ ( 1 ); ( 2 ); ( 3 ) => 2a - 1 \(⋮\)5;7;9
Để a là STN nhỏ nhất thì 2a - 1 \(\in BCNN\left(5;7;9\right)\)= 5.7.9 = 315
=> 2a = 316 => a = 158.
b, Tương tự phần a.
Vì A chia hết cho 2 và 5 nên A chia hết cho 10
=>y=0
Vì A chia hết cho 9
=>3+x+4+0 chia hết cho 9 hay 7+x chia hết cho 9
=>x=2
Vậy số cần tìm là 3240
để Bchia cho 5 dư 2
suy ra y =2 hoặc y=7
để B chia hết cho 9;theo tính chất chia hết của một tổng
TH1:
Ta có:5+2+x+8+2=17+x suy ra x=1
TH2:
Ta có:5+2+x+8+7=22+x suy ra x=5
y=0 Vì 62x1y phải chia hết cho 2,5
x=0;3;6;9 Vì 62x10 phải chia hết cho 3
Để 62x1y \(⋮65\)
=> \(\left\{{}\begin{matrix}\overline{62x1y}⋮5\\\overline{62x1y}⋮13\end{matrix}\right.\)
mà \(\overline{62x1y}⋮5\Leftrightarrow\left[{}\begin{matrix}y=0\\y=5\end{matrix}\right.\)
Khi y = 5 thì số đó trở thành \(\overline{62x15}\)
Khi đó \(\overline{62x15}=62000+x.100+15=62015+100x\)
\(=13.4770+100x+5\)
Khi đó \(\overline{62x15}⋮13\Leftrightarrow100x+5⋮13\)
Với \(x\inℕ;x< 10\)
\(\Rightarrow∄x:100x+5⋮13\)
Tương tự khi y = 0
Ta được \(\overline{62x10}=62010+100x=4770.13+100x\)
Khi đó \(\overline{62x15}⋮13\Leftrightarrow100x⋮13\)
Với \(x\inℕ;x< 10\)
\(\Rightarrow x=0\) thỏa mãn
Vậy (x;y) = (0;0)
vì 30xy chia hết cho 2 <=>y thuộc {2,4,6,8,0}
mà 30xy chia cho 5 dư 2=> y=2
ta có 30x2chia hết cho 3
=> 3+0+x+2 chia hết cho 3
=>5+x chia hết cho 3
=> x=1
vậy xy = 12
Vì số 30xy chia 5 dư 2 nên y=2 hoặc 7
Mà số 30xy chia hết cho 2 nên y=2.
Để số 30x2 chia hết cho 9 thì (3+0+x+2) chia hết cho 9 hay(5+x) chia hết cho 9 \(\Rightarrow\)x=4
Vậy x=4;y=2.
x=9;y=0
\(\overline{62x1y}\) ⋮ 2 ; 5 ⇒ y = 0
\(\overline{62x1y}\) ⋮ 9 ⇒ 6 + 2 + \(x\) + 1 + y ⋮ 9 ⇒ \(x\) + y ⋮ 9 ⇒ \(x\) ⋮ 9 ⇒ \(x\) = 0; 9
Vậy (\(x\);y) = (0; 0); (9; 0)