K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2023

d) Áp dụng tính chất 2 tiếp tuyến cắt nhau trong đường tròn (O) và 2 tiếp tuyến tại M và N, ta có AO là tia phân giác của \(\widehat{MAN}\) (1)

 Lại có \(\widehat{AME}=\widehat{MNE}\) (do chúng là góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp chắn cung đó)

 Hơn nữa, vì AO là trung trực của đoạn MN nên E thuộc trung trực của MN \(\Rightarrow EM=EN\) \(\Rightarrow\Delta EMN\) cân tại E \(\Rightarrow\widehat{ENM}=\widehat{EMN}\)

 Từ đó suy ra \(\widehat{AME}=\widehat{EMN}\) hay ME là tia phân giác của \(\widehat{AMN}\). (2)

 Từ (1) và (2) \(\Rightarrow\) đpcm.

e) Gọi C là giao điểm của PO và (AMN). Khi đó ta có  \(PB^2=PN.PM=PC.PO\) nên \(\Delta PBC~\Delta POB\left(c.g.c\right)\) \(\Rightarrow\widehat{PCB}=\widehat{PBO}=90^o\) \(\Rightarrow PC\perp BC\)

Mặt khác, do đường tròn (AMN) có đường kính là AO nên \(\widehat{ACO}=90^o\Rightarrow AC\perp PC\)

 Từ đó suy ra A, B, C thẳng hàng. Do đó \(\widehat{ABM}=\widehat{BPO}\) (vì cùng phụ với \(\widehat{POB}\))

Bạn tự vẽ hình nha!

c) Các tam giác ACM và BDM cân tại C và D; CO là phân giác góc ACM; DO là phân giác góc BDM => Các đường phân giác này cũng là đường cao => CO vuông góc với AM tại E và DO vuông góc với BM tại F => g. OEM = OFM = 90o.

Mặt khác g.AMB =90o(Góc nội tiếp chắn nửa đường tròn) => Từ giác OEMF là hình chữ nhật => I là trung điểm của OM => IO = OM/2 = R/2 (Không đổi)

Do đó khi M di chuyển thì trung điểm I của EF luôn cách O một khoảng không đổi R/2 => Quỹ tích trung điểm I của EF là nửa đường tròn tâm O bán kính R/2 cùng phía với nửa đường trón tâm O đường kính AB.

 
18 tháng 3 2017

Ngây sao hảaaaaaaaaaaaaaaaaaaaa

19 tháng 3 2017

sao bạn ơi 

21 tháng 12 2021

22 tháng 11 2021

d. OF//BD nên \(\widehat{FOD}=\widehat{ODB}\)

Mà \(\widehat{ODB}=\widehat{ODF}\Rightarrow\widehat{FOD}=\widehat{ODF}\)

Do đó FOD cân tại F

\(\Rightarrow OF=FD\)

Áp dụng Talet: \(\dfrac{BD}{FD}=\dfrac{BD}{OF}=\dfrac{DH}{HF}\)

\(\Rightarrow\dfrac{BD}{DF}+\dfrac{DF}{HF}=\dfrac{DH}{HF}+\dfrac{DF}{HF}=\dfrac{DH+DF}{HF}=\dfrac{HF}{HF}=1\left(đpcm\right)\)